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ABSTRACT

USING AUGMENTED VIRTUALITY TO IMPROVE

HUMAN-ROBOT INTERACTIONS

Curtis W. Nielsen

Computer Science

Doctor of Philosophy

Mobile robots can be used in situations and environments that are distant

from an operator. In order for an operator to control a robot effectively he or she

requires an understanding of the environment and situation around the robot. Since

the robot is at a remote distant from the operator and cannot be directly observed,

the information necessary for an operator to develop an understanding or awareness

of the robot’s situation comes from the user interface. The usefulness of the interface

depends on the manner in which the information from the remote environment is

presented.

Conventional interfaces for interacting with mobile robots typically present

information in a multi-windowed display where different sets of information are pre-

sented in different windows. The disjoint sets of information require significant cogni-

tive processing on the part of the operator to interpret and understand the informa-

tion. To reduce the cognitive effort to interpret the information from a mobile robot,

requirements and technology for a three-dimensional augmented virtuality interface

are presented. The 3D interface is designed to combine multiple sets of information
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into a single correlated window which can reduce the cognitive processing required

to interpret and understand the information in comparison to a conventional (2D)

interface.

The usefulness of the 3D interface is validated, in comparison to a prototype

of conventional 2D interfaces, through a series of navigation- and exploration-based

user-studies. The user studies reveal that operators are able to drive the robot,

build maps, find and identify items, and finish tasks faster with the 3D interface

than with the 2D interface. Moreover, operators have fewer collisions, avoid walls

better, and use a pan-tilt-zoom camera more with the 3D interface than with the 2D

interface. Performance with the 3D interface is also more tolerant to network delay

and distracting sets of information.

Finally, principles for presenting multiple sets of information to a robot

operator are presented. The principles are used to discuss and illustrate possible

extensions of the 3D interface to other domains.
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Chapter 1

Introduction

Robots have been used in a variety of settings where human access is dif-

ficult, impractical, or dangerous. These settings include search and rescue, space

exploration, toxic site cleanup, reconnaissance, patrols, and many others. Such set-

tings provide a unique problem in that the robot operator is distant from the actual

robot due to safety concerns. In order to operate a robot efficiently at remote dis-

tances, it is important for the operator to be aware of the environment around the

robot so that the operator can give informed, accurate instructions to the robot. This

awareness of the environment is often referred to as telepresence [110, 109] or situation

awareness [35, 93].

1.1 Poor Situation Awareness

Despite the importance of situation awareness in remote-robot operations,

experience has shown that interfaces between humans and robots typically do not

sufficiently support the operator’s awareness of the robot’s location and surroundings.

As an example, in September 2001, robots were used to search the rubble of the World

Trade Center for survivors [23]. The robots were useful because they were able to go

into small, dangerous areas that were inaccessible to rescue workers; however, it was

quite difficult for the operator to navigate the robot while searching the environment

because the robots only provided video information to the operator [23]. The limited

angular view of most cameras creates a sense of trying to understand the environment

through a ‘soda straw’ or a ‘keyhole’ [138, 137]. This limited view of the robot’s

1
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environment makes it difficult for an operator to be aware of the robot’s proximity

to obstacles [3, 6].

In comparison to the robots used at the World Trade Center, many robots

used for studying human-robot interactions (HRI) have range sensors and a map-

building algorithm in addition to the camera. However, despite better equipment,

recent experiments suggest that operators still experience inadequate levels of situa-

tion awareness [33, 140]. In one experiment, Yanco and Drury had first responders

search a mock environment looking for victims using a robot that had sonar, laser,

camera, and map-building capabilities [140]. They found that despite spending up to

30% of their time acquiring situation awareness the participants often expressed and

demonstrated confusion concerning the robot’s location relative to obstacles, land-

marks, and previous locations. A common complaint among the participants was

that the map built by the robot was totally useless because it did not help them

understand the robot’s location [140].

In another field study involving rescue robots in an Urban Search and

Rescue (USAR) training exercise, Burke et al. found that operators spent up to 54%

of their time acquiring situation awareness as opposed to navigating the robot [18].

Again, despite spending most of their time acquiring information about the robot and

the environment, the participants still had difficulty using the robot’s information to

improve their own understanding of the search and rescue site.

The lack of situation awareness observed in the previous examples is not

limited to rescue personnel and others who may be unfamiliar with the robot and the

interface. Similar results of poor situation awareness were found in a 2001 AAAI1

USAR competition [57, 58]. In this competition, it was the engineers that developed

the robots and the interface, who competed using their own equipment. Despite the

operator’s familiarity with the equipment and the abundance of information (laser,

sonar, map, and camera), the operators still demonstrated a lack of awareness of the

robot’s location and surroundings by bumping into obstacles and even leaving the

experiment arena [33, 141].

1American Association for Artificial Intelligence

2



www.manaraa.com

One possible reason operators experienced poor situation awareness in the

previous studies is that conventional (2D) interfaces were used to display informa-

tion from the robot to the operator. Conventional interfaces make it difficult for an

operator to maintain an awareness of the robot’s situation because sets of related

information are presented in discrete parts of the display. When related informa-

tion is presented in different places, an operator must mentally correlate the sets of

information, which can result in decreased situation awareness and decreased perfor-

mance [35, 71, 106]. To improve situation awareness and performance, the interface

should correlate and present related information in a single part of the interface,

thereby reducing the operator’s cognitive workload required to interpret the informa-

tion.

1.2 Our Solution

In response to the need for an interface that correlates related information

for the operator, we have designed a prototype 3D interface. The 3D interface in-

tegrates map, video, and robot information into a single mixed-reality display which

renders a virtual environment based on real data and augmented with real video. The

3D interface significantly increases an operator’s situation awareness in comparison

to conventional 2D interfaces because a) related sets of information are combined

and presented intuitively to the operator and b) the operator can see more of the

environment through a larger field of view. Improvements in situation awareness and

performance are manifest in a a variety of navigation and exploration tasks.

1.3 Thesis Statement

We show that a 3D prototype interface is better than conventional 2D

interfaces for remote robot teleoperation by comparing the 3D interface with a con-

ventional 2D interface in a series of user studies. The user studies focus on navigation

and exploration tasks and the use of a pan-tilt-zoom camera. We identify principles

that govern the success of the 3D interface over the 2D interface and we show how

these principles can be applied to extend the 3D interface to other domains. We

3
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discuss why the 3D interface is better than conventional 2D interfaces from a human

factors perspective.

1.4 Overview

This dissertation will proceed as follows. In Chapter 2, we discuss previous

work related to our field. This will address a variety of fields of research including

robotics, human factors, psychology, philosophy, human-computer interaction, and

human-robot interaction. In Chapter 3 we present a list of requirements for a use-

ful 3D interface and we show the technology our interface uses to match the list of

requirements. In Chapter 4 we present a series of user studies that compare our

3D interface with a prototype of conventional 2D interfaces in experiments involving

navigation. The user studies are performed in both virtual and real world environ-

ments. Chapter 5 follows with a series of user studies that compare our 3D interface

with a prototypical 2D interface in exploration tasks and discusses the use of a pan-

tilt camera. These user studies are also performed in real and virtual environments.

Chapter 6 will then discuss principles that helped operators perform better with the

3D interface than the 2D interface for the navigation and exploration experiments.

The principles are then used to discuss extensions of the 3D interface to other do-

mains. Chapter 7 summarizes the results of the dissertation and addresses some

possible directions for future work.

4
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Chapter 2

Previous Work

In this chapter we will discuss previous work in Human-Robot interaction

and we will show how some of the most recent work has lead researchers to the conclu-

sion that interactions between a human and a remote robot are difficult because the

operator does not have sufficient situation awareness. We will then review a definition

on situation awareness and show how much of the theory surrounding situation aware-

ness is very similar to the ideas behind presence, telepresence, and virtual presence.

This chapter will conclude with a discussion on techniques from virtual environments

and mixed-reality research that have been used to interact with a remote robot.

2.1 Human-Robot Interaction

The field of Human-Robot Interactions covers many areas including enter-

tainment [11, 21], museum guides [125, 17], health care [61, 99], space exploration [4],

protection [60], and rescue robotics [18, 23, 54, 86]. In our research, we are focused on

improving remote-robot operations—situations where the robot is distant from the

operator, or Teleoperation.

One method to improve teleoperation is to use autonomy or intelligence

on the robot. Some autonomy-based approaches to teleoperation include shared con-

trol [110], safeguarded control [40, 67], adjustable autonomy [10, 14, 47, 104], and

mixed initiatives [14, 50, 65]. Safeguarded control is the ability of the robot to

protect itself despite operator commands, for example, to keep from hitting walls.

Adjustable autonomy is the ability to change the intelligence of a robot and adjust

the interaction between the human and robot. Mixed-initiatives is the ability for

5
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either the human or the robot to take initiative over the movement of the robot. One

limitation of these approaches is that some control of the robot is taken away from

the human. This limits the robot to the behaviors and intelligence that have been

pre-programmed. There are situations where the operator may know more than the

robot’s algorithm does and it is unlikely that the robot would be “designed” to handle

every possible situation. One solution to overcoming the pre-programmed nature of

behaviors and intelligence is through the development of reactive robot architectures

or behavior-based robotics where intelligent behavior emerges from a set of low-level

primitives [5, 9, 12]. The real robot we use for some of our experiments has a simple

safeguarding mechanism to protect itself from walls. However, most of our research

focuses on robots that do not have higher autonomy. This is so we can focus on the

fundamental aspects of human-robot interaction.

2.1.1 Interaction Methods

Fong observed that there would always be a need for human involvement

in vehicle teleoperation despite any intelligence on the remote vehicle [41]. Sheridan

holds similar thoughts and introduced the notion of supervisory control to explain how

the human should be “kept in the loop” of the control of the robot [110] regardless

of the level of autonomy of the robot.

There are many approaches for interacting with a robot, including ges-

tures [56, 131], web-based controls [142, 107], and PDAs [63, 112]. Fong and Murphy

have also addressed the idea of using dialog to reason between an operator and a

robot when the human or robot needs more information about a situation [39, 89].

Skubic’s group combined the use of a PDA and a linguistic representation to allow

a novice user to draw a sketch of an environment and a path for the robot to follow

through the environment on the PDA [24]. The robot uses a qualitative, linguistic

representation of the obstacles around the robot to determine where it is in relation

to the devised path. Most of these approaches tend to focus on different ways of

interacting with a robot rather than determining which ways are more useful than

others.

6
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2.1.2 Urban Search and Rescue

Recently, rescue robotics was named as one of the grand-challenges of

human-robot interactions [19]. Rescue robotics has really come to the attention of

many since robots were used in the World Trade Center disaster. Casper presented

a post-hoc analysis of the human-robot interactions during the robot assisted urban

search and rescue response at the World Trade Center in September 2001 [23]. This

was the first robot response to a real, un-staged urban search and rescue operation.

Murphy observed that because only video information was available, the user inter-

faces were very limited and did not effectively present environment information to

the operator [86]. Further, there was no spatial information about previously seen

places in the world which made it difficult for operators and rescuers to comprehend

and remember where the robot had been and what it had seen. This presented seri-

ous challenges for the operator to maintain situation awareness of the robot and its

environment. In fact, subsequent studies by Burke et al. revealed that up to 50% of a

rescue robot operator’s time is spent gathering and maintaining situational informa-

tion without moving the robot [18]. Part of the reason for the time spent acquiring

situation awareness was because it is difficult for the operators to integrate the robot’s

view of the environment into their own understanding of the rescue site.

Similar results were found by Yanco and Drury in a usability study of

their human-robot system with four first-responders [140]. They found that despite

spending significant time acquiring situation awareness, the participants did not un-

derstand the robot’s location and surroundings in the environment and even though

the robot’s location was presented via a map of the environment, the participants

considered the map useless. Yanco et al. also analyzed results from the 2001 AAAI

Robot Rescue Competition [1] where robot developers navigated their own robot sys-

tems in a mock search and rescue environment [141]. The results of the experiments

show that the operators of the competition vehicles did not have sufficient awareness

of the robot, its location, and its surroundings. This was in spite of the fact that

the operators were the ones who built the robot and its interface, suggesting that

7
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training and experience with the system did not help the operator’s situation aware-

ness. The authors recommend a) fusing sensor information to reduce the operator’s

cognitive load, b) minimizing the use of multiple windows, and c) providing more

spatial information about the robot in the environment.

Poor situation awareness has been identified as a reason for operator confu-

sion in robot competitions [33, 141] and urban search and rescue training [18]. In fact

Robin Murphy suggests that “More sophisticated mobility and navigation algorithms

without an accompanying improvement in situation awareness support can reduce

the time spent on a mission by no more than 25 percent” [87].

2.2 Situation Awareness

In her seminal paper, Endsley defines situation awareness as “The per-

ception of the elements in the environment within a volume of time and space, the

comprehension of their meaning, and the projection of their status in the near fu-

ture” [35]. Additionally, Dourish and Bellotti define awareness as, “...an understand-

ing of the activities of others, which provides a context for your own activity” [27].

When applied to human-robot interactions, these definitions imply that a successful

interaction is related to an operator’s awareness of the activities and consequences of

the robot in a remote environment. Endsley’s work has been used throughout many

fields of research that involve humans interacting with technology [36, 93, 135] and

has been fundamental for exploring the information needs of a human operating a

remote robot.

2.2.1 Presence

Similar to the notion of situation awareness are the ideas of presence, telep-

resence, and virtual presence. According to Sheridan, presence is considered “the

sense of actually being at a remote or synthetic workplace which users of telerobot

or virtual environment systems developed during operation of the system’s human

interface” [109]. This statement indicates that for an operator to have presence,

they must feel as though they are actually at the remote place. Further, according
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to Sheridan, “presence is a subjective sensation or mental manifestation that is not

easily amenable to objective physiological definitions and measurements.” These per-

spectives illustrate a rationalistic perspective on presence [51, 113, 116], namely that,

a user has presence when they develop a sufficient mental model of the environment

and they have adequately processed the perceived information.

Schloerb presents another theory of presence which develops the definition

of telepresence. Schloerb begins with physical presence as “the existence of an object

in some particular region of space and time” [105]. He then discusses how this notion

of a physical presence supports subjective presence which is the “perception of being

located in the same physical space in which a certain event occurs, a certain process

takes place, or a certain person stands.” This is similar to other perspectives on

presence [110, 114, 116]. In addition to subjective presence, Schloerb points to the

need for objective presence which is the need to interact with objects and is measured,

according to Schloerb, by task completion.

Mantovani and Riva claim that the meaning of presence is closely linked

to the concept we have of reality and that different views of reality support different

criteria for presence [77]. The authors combat Schloerb’s theory of presence [105]

by claiming that the placement of physical presence as the base of our experience

of presence is flawed because telepresence is inherently not physical, even though it

does contain interactions with objects. In response to Schloerb’s theory, Mantovani

and Riva discuss the notion of reality as not somewhere ‘outside’ people’s minds,

it is socially constructed [43] based on the relationships between actors and their

environments as mediated by artifacts.

Zahorik and Jenison discuss a view of presence based on existential philos-

ophy and ecological psychology [143]. Notions of subjective and objective presence

no longer exist. Instead, “presence is tantamount to successfully supported action in

the environment”, whether virtual or real, local or remote. Further, the concept of

a mental representation is discarded, because after all, “how better to represent the

environment than with the environment itself?” [44]. The purpose of this approach
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as presented by Zahorik and Jenison is to show that the coupling between perception

and action is essential for determining how well actions are supported.

Tittle et al. also provide a functional definition of presence to mean the

operator receives enough cues to successfully conduct operations without requiring

the sense that they are actually situated at the remote location [128].

The definitions of presence as discussed by Mantovani and Riva, Zahorik

and Jenison, and Tittle et al. are similar to Endsley’s definition of situation awareness

in that the operator needs sufficient information to act. We follow this line of thought

when working with robots, because the common reason for interacting with a remote

robot is to accomplish some task.

2.2.2 Affordances

Gibson has a view on the psychology of perception that differs from tra-

ditional theories [52, 62, 127]. He contends that we do not construct our percepts,

but that our visual input is rich and we perceive objects and events directly [44]. He

claims that the information an agent needs to act appropriately is inherent in the

environment. Gibson used the term affordance to describe the relationship between

the environment and the agent. In his words “The affordances of the environment

are what it offers animals, what it provides or furnishes, either for good or ill” (page

127, emphasis in original). Affordances are attractive to the robotics community be-

cause they are compatible with the reactive-based robot paradigm and they simplify

computational complexity and representational issues [88]. With Gibson’s ecologi-

cal approach, successful human-robot interaction implies that the operator is able to

directly perceive the cues from the environment that support the actions of the robot.

Norman disagreed fundamentally with Gibson’s approach to how the mind

actually processes perceptual information, but he did come to agree with Gibson’s

theory of affordances [95]. In The Design of Everyday Things, Norman discusses

perceived affordances, which are what the user perceives they can do with some

thing whether or not that perception is correct [94]. He claims that the goal of

design should be to make affordances and perceived affordances the same. This idea
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is directly applicable to mobile robots because it is necessary that information be

provided that supports the operator’s correct perception of available actions for the

robot. Norman also advocates that the culpability of “human error” can often be

attributed to “equipment failure coupled with serious design error.” Therefore, in

cases where an operator is performing poorly, it may be the consequence of a poorly

designed system.

In Human-Robot interactions, Endsley’s definition fits with Gibsonian af-

fordances, because when information is directly perceived, it should signal to the

participant how it can be used and how its use will affect the environment. The chal-

lenge is to present the information from the remote environment to the operator in

such a way that the perceived affordances of the environment match the actual affor-

dances and the operator can easily perceive, comprehend, and anticipate information

from the remote environment.

2.2.3 Field of View

One of the shortcomings when navigating a robot with a conventional

interface is that typical cameras have a very narrow field of view. For example, a

human’s lateral field of view is normally 210 degrees [3], in contrast, the camera on

our robot has a field of view of only 37 degrees. The field of view that the operator

has of an environment is very important to navigation. A poor field of view has been

attributed to negatively affect locomotion, spatial awareness, and perceptions of self-

location [3]. Further, Woods described using video to navigate a robot as attempting

to drive while looking through a ‘soda straw’ [138]. One of the main challenges with

teleoperating robots is that the operator typically does not have a good sense of what

is to the ‘sides’ or ‘shoulders’ of the robot [48], and obstacles that need the most

attention are typically outside of the field of view of the robot.

One method for overcoming a narrow field of view is to use multiple cam-

eras [130, 8]. For example, Hughes et al. used two cameras and showed that it

improved an operator’s ability to perform a search task [55]. Another method for

improving field of view is to use a panospheric camera [91, 122, 121, 139], which gives

11



www.manaraa.com

a view of the entire region around the robot. These approaches may help operators

better understand what is all around the robot, but they require fast communications

to send large or multiple images with minimal delay. We are restricting attention to

robots with a single camera.

2.3 Interface Design

2.3.1 Conventional Approach

Most conventional interfaces used to interact with remote robots focus on

the accuracy with which information is presented to the operator instead of focusing

on communicating effective environmental cues. This has led to the use of displays

such as those shown in Figure 2.1, which show information from the environment,

but present it in distinct windows throughout the display. The disparate informa-

tion leaves to the operator the responsibility of mentally combining the data into

a cognitive map of the environment. This approach to interface design follows the

constructivist theory of perception which claims that smaller, individual elements are

combined to give perceptions [52].

Bruemmer et al. are developing a robot system for remote operations that

uses behavior-based algorithms to create a mixed-initiative human-robot team [14,

16]. Information is displayed to the operator via a typical 2D display as shown in

Figure 2.1(c). Baker et al. have simplified the interface designed by Bruemmer et

al. in an effort to improve the human-robot interactions as shown in Figure 2.1(d).

Both interfaces present information using a conventional robot-centric approach with

separate windows for different information sources. These interfaces are typically very

useful for robot system development and testing as they provide enough information

for the engineer to diagnose any problems that exist, but they may not adequately

support an operator’s situation awareness in many interesting remote environments.

2.3.2 Virtual Environments

Another way to improve robot teleoperation is to use virtual environ-

ments to create a virtual scene that represents the real environment. The Virtual
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(a) Our 2D interface (b) Adopted from [141]

(c) Adopted from [16] (d) Adopted from [8]

Figure 2.1: Conventional interfaces present information in separate windows within
the display.

Environment Vehicle Interface (VEVI) was designed by the Intelligent Mechanisms

Group (IMG) at NASA Ames Research Center with the goal of supporting control

and teleoperation of vehicles on remote planetary surfaces [53, 97]. The system has

been used to explore volcano craters in Alaska [38] and Hawaii [117], guide underwa-

ter exploration in the Antarctic, service satellites, and direct automated forklifts [92].

The system uses stereoscopic images to create a virtual environment in which an op-

erator can experiment with commands before sending the commands to the robot.

Stoker used a similar system to analyze data and interact with the Mars Pathfinder

vehicle in [118]. Nguyen et al. report that such systems are less efficient with direct

teleoperation because of the high dependence on vehicle sensors. They also observe
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that the system works well when the operator can first work out the commands in

simulation and then issue the set of commands to the robot [92].

2.3.3 Mixed Reality

Milgram and Drascic discuss Mixed Reality displays that are a “particular

subset of Virtual Reality (VR) related technologies that involve the merging of real

and virtual worlds somewhere along the ‘virtuality continuum’ ” [81]. On one side

of the virtuality continuum are real environments, on the opposite side are virtual

environments. Mixed reality, sometimes referred to as augmented reality [7, 83], is

the domain between the two extremes. Milgram and Drascic point out that most

of the work in mixed reality has been done using head-mounted displays that either

provide video feedback of the real world or allow the user some direct visibility of the

real world.

Milgram and Kishino present a taxonomy that addresses the real and

virtual aspects of mixed reality environments [81]. The dimensions of their taxon-

omy include: extent of world knowledge, reproduction fidelity, and extent of presence

metaphor. This taxonomy fits well with our needs because it splits the notion of pres-

ence into “image quality” and “immersion”, in contrast to other taxonomies whose

primary goal is creating an immersed presence [103, 110]. This split notion of pres-

ence provides a useful category for monitor-based mixed-reality displays [30, 37, 133],

which are the tools of our research.

Drascic and Milgram found that the use of a stereoscopic display improves

the user’s interaction because it presents depth information directly to the user [29].

In contrast, monoscopic video images require the operator to interpret shadows and

reflections to infer spatial relations [28]. Milgram and Drascic discuss the use of aug-

mented reality as a means to overlay a stereoscopic display with virtual information to

facilitate communications between a human and a robotic arm [84]. Their approach is

based on the ARGOS (Augmented Reality through Graphic Overlays on Stereovideo)

system [30] and combines elements such as a virtual pointer [31], a virtual tape mea-

sure, and virtual landmarks to help the user control the robotic arm. By gathering
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stereoscopic information from the remote environment, the user is able to view a vir-

tual 3D scene of the environment. Then, the user experiments within the augmented

reality environment to determine exactly how they want to manipulate the robotic

arm. Once the commands are determined, the user sends them to the remote robot

and the commands are actuated. This approach is similar to the interactions with

the VEVI control system [92, 97].

Meier et al. explored the possibility of using sensor fusion for making the

operator more aware of the environment around a mobile robot [80]. Their display

is typical of sensor fusion approaches for mobile robotics in that they overlay real

video information with depth and other virtual information [8]. In this particular

approach the video is from a stereoscopic camera and it is combined with sonar

range information to create a colored depth map. Additionally, the image displays

a projected grid which is overlaid on the ground and obstructed by above-ground

obstacles. The grid cells are close to the same size of the robot to support the

operator’s comprehension of distances. The problem with most of these sensor fusion

based displays is that even though the video is augmented with virtual information,

the field of view of the environment is still limited by the field of view of the camera.

In another example of a mixed-reality display, Johnson et al. created an

“EgoSphere” (a term first proposed by Albus [2]) to enhance their robot interface [59].

The EgoSphere consists of a 3D sphere around the robot on which interesting obser-

vations are portrayed. They did not find the EgoSphere to be particularly useful with

a mobile robot. We believe that an EgoSphere is probably more appropriate for an

augmented reality display where the operator is wearing a head-mounted display.

Suomela et al. developed a fully adjustable three-dimensional map that

supports traditional two-dimensional map views and a full range of perspective views

for a head-mounted display [120]. They found that a single perspective view is useful

sometimes, but different participants preferred different perspectives [73]. Further,

they identified situations where a “north-up” map is better than a “north-forward”

map and vice versa [72]. The purpose of their development was to combine previous
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map abilities into a single user-adjustable interface. This research is particularly rel-

evant to mobile robot research because the requirements of successful navigation for

robots is similar to that of humans, namely recognition and traversal of possible direc-

tions of travel (affordances) and recognition of obstacles. The 3D interface described

in this paper is shown to facilitate human navigation in unknown environments, so it

stands to reason that a similar interface may improve robot teleoperation in unknown

environments.

2.3.4 Augmented Virtuality

Another form of mixed reality is Augmented Virtuality. Augmented virtu-

ality refers to virtual environments which have been enhanced or augmented by inclu-

sion of real world images or sensations. Augmented virtuality differs from augmented

reality (another form of mixed reality) because the basis of augmented virtuality is

that the environment is virtual as opposed to real [32].

In harmony with Gibson’s theory of perception, Ricks et al. present eco-

logical displays for teleoperating a mobile robot [102]. The motivation behind the 3D

display is Gibson’s notion of affordances and direct perception. The displays present

a visually pleasing integration of range and camera information that is rendered in

three dimensions, but does not require a complex 3D model or registration between

real and virtual objects. The displays do not use map-building but render informa-

tion from the current laser and sonar range scan as green and blue barrels. The video

information is scaled and pushed deep into the display such that the range informa-

tion appears in front of the video, but the video still fills most of the screen [102].

The approach is opposite to typical augmented reality approaches [8, 84, 92, 98, 141]

because it builds a virtual environment based on real information and augments the

virtual environment with real video—an augmented virtuality solution. The advan-

tage of using an augmented virtuality solution is that the information presented to

the operator has a much larger field of view. Instead of being constrained by the field

of view of the camera, range information can now be used to “see” the sides of the

robot and the video information can be located relative to the map information.
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Ricks compared an ecological display with a conventional interface in a

mobile robot navigation task and found that the ecological display improved perfor-

mance while decreasing workload and reducing the number of collisions [101]. These

results suggest that using a similar augmented virtuality approach could significantly

improve an operator’s situation awareness in comparison to typical two-dimensional

interfaces including augmented reality interfaces. We have extended Ricks’ work by

adding map-building, a scaled robot model, an adjustable perspective, and the ability

to store information in the display.

2.4 Summary

In order to significantly improve performance on a task with a teleoper-

ated robot, an operator’s situation awareness of the remote environment must be

improved. Since the operator is not collocated in the same environment as the robot,

the development of an operator’s situation awareness must come through information

visible on the user interface. Most of the current research in human-robot interaction

focuses on how an operator could interact with a robot (i.e. using a PDA, gestures,

the internet, a desktop computer, a head-mounted display) and what information

could be useful to the operator (camera, range, map, proximity indicators, sensor

status, waypoints, goals). However, the question of how the information should be

presented to the operator has not been adequately addressed.

Conventional interfaces for teleoperating a remote robot do not adequately

support the development of situation awareness because related information from

the robot is usually presented in different parts of the display and the operator is

responsible to mentally correlate the information. An interface that better supports

the development of situation awareness would display related information in a single

part of the display so the operator can immediately observe how different sets of

information are related to each other. Additionally, the usefulness of interfaces is

typically validated by subjective evaluations or by showing that it fulfills a set of

requirements or can be used to accomplish a particular task or set of tasks. A stronger
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validation would be to provide empirical evidence that shows which interface yields

better results than another interface.
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Chapter 3

The 3D Augmented Virtuality Interface

In human-remote robot interactions (HRI), the interface is the tool through

which the operator visualizes the robot’s environment and communicates instructions

to the robot. Information from the robot’s environment is gathered from sensors on

the robot and transmitted to the interface. The interface renders the information

from the robot’s environment so the operator can visualize the remote information

and make informed decisions about how to use the robot. The operator communicates

instructions to the robot through an input device such as a keyboard or joystick that

is connected to the interface. The interface then transmits the instructions to the

robot where they are actuated.

For this research, a Pentium IV desktop computer with a 19” LCD monitor

is used as the interface between the operator and the robot. Operator commands are

actuated with a Microsoft Sidewinder joystick or steering wheel which are received

and interpreted by the interface computer and sent to the robot over 900 MHZ wireless

modems or interprocess communications1. Information from the robot’s environment

is gathered from range and camera sensors on the robot and transmitted to the

interface via the wireless modems and an 802.11g wireless network. Information

received by the interface computer is rendered on the computer monitor using software

including the OpenGL graphics library. Henceforth, when we refer to the interface we

are referring to the program on the desktop computer that displays information from

the robot’s environment on the computer monitor. Requirements and technology for

1When a simulator was used for driving the robot, the interface and the simulated robot where
run on the same computer. When a real robot was used, the interface and robot were separate
computers.
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designing and building a useful interface for human-robot interactions are presented

throughout this chapter.

3.1 Requirements

For a display to be considered useful and effective, we require three features

that have been identified by experts in human-robot interaction. First, the interface

must allow the user to store information in the display [106, 140]. Second, the interface

must integrate sensor information into a single coherent display [33, 42, 78, 110, 140].

Finally, it must allow the user to adjust their perspective of the environment to match

the needs of the operator and the task at hand [106, 120, 136]. While each of these

aspects is important, it is also necessary that they are easy to use. We will next

discuss these three requirements for a useful interface and show how conventional

interfaces for teleoperating robots typically do not support these features.

3.1.1 Information Storage

In tasks where an operator is required to remember where objects are,

or what was happening at various places in the environment, it is typically left up

to the operator to remember the information. As the complexity of such a task

increases or the amount of information that must be remembered increases, it quickly

becomes likely that the operator will forget some information or their recollection will

deteriorate. To reduce the memory requirements on the human operator we require

an interface that facilitates information storage.

In conventional remote-robot interfaces, information storage is typically

not implemented. However, when it is implemented, the approach is to use small

icons such as an ’X’ or an ’O’ and overlay these on the map. The problem with this

approach is that it is difficult for the operator to remember the meaning of the icons

and multiple, collocated icons become confusing to the operator [111, 136]. Further, it

is usually not practical to store annotations, images, or full video information directly

in the display even though it may be advantageous to associate user-customizable

entries with the map.
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3.1.2 Integrate Information

To accurately store information in the interface that correlates with the

remote environment and to make the information easily accessible to the operator,

we require that the information from the robot and the environment be integrated into

a single display. The information from the robot includes many things including robot

status, video, laser readings, sonar data, map information, position data, snapshots,

landmarks, and icons. Interfaces that do not integrate information force the user to

mentally combine the different sensory information into a cognitive understanding of

the robot’s situation and its environment. In contrast, an integrated display presents

the user with a view of the environment that combines the relevant information into

a single display such that the cognitive information processing required to interpret

the information is reduced [48, 102].

A typical approach to providing information to the operator is to put the

different sets of information in different windows and to provide the operator as

much information as is available. This approach is typified by the interface in Fig-

ure 3.1(a) from [14, 16]. It is also customary to present a subset of the available

information as shown in Figure 3.1(b) from [8, 111, 136]. These displays are typi-

cal of what might be found for robot teleoperation interfaces [8, 16, 23, 41, 42, 141]

and represent what we refer to as conventional 2D interfaces. These interfaces are

very useful for testing and debugging a robot system and assuring that the system is

behaving appropriately. The main problem with these displays is that information,

even related information, is not integrated, but is presented in different places on the

screen which makes it difficult for an operator to gain a holistic understanding of the

robot within its environment [66, 129, 136].

A more advanced approach to integrating information is the notion of sen-

sor fusion. This work has typically been done with an augmented reality approach

wherein video information from the robot is augmented with range information [80]

or other information to better understand the environment [8]. There are two main

deficiencies with this approach. First, the video image has typically been gathered

from stereoscopic cameras, which means there is a high computational workload to

21



www.manaraa.com

(a) (b)

Figure 3.1: Typical interfaces for robot teleoperation as developed by (a) INL and
(b) Baker and Yanco.

determine the 3D scene and communicate it to the operator. Second, the field of view

of the environment is limited to that of the camera because it is the video stream itself

that is augmented with range information. Others have looked at using panoramic

cameras, but these systems also require large bandwidth for sending the panoramic

video to the operator.

In systems that use augmented reality interfaces, it has been found that the

best method of interacting with the robot is to create a complete virtual environment

from the information, then practice the commands the operator would like the robot

to perform in the real world. Once the commands are learned, they are sent to the

robot to be actuated [82, 118, 119]. Nguyen et al. observed that augmented-reality

systems are better for high-level task planning control and less efficient for the direct

teleoperation tasks we are interested in [92].

3.1.3 Adjustable Displays

Information storage and integrated displays are important concepts for re-

ducing the mental workload of the user. In addition, research has shown that certain

displays are better suited to certain tasks [136]. Scholtz observed that the roles of

human operators do not remain constant and, therefore, interfaces should be designed
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to adapt accordingly [106]. For example, when performing navigational tasks, an ego-

centric perspective is typically preferred to an exocentric perspective. However, when

performing spatial reasoning tasks such as path planning, an exocentric perspective

is preferred [136].

Conventional interfaces, as presented previously (see Figure 3.1), do not

support adjustable perspectives. While it could be argued that the video information

and the map information suffice for most navigational and spatial needs [136], it is

reasonable to expect that some perspective between the two may also prove beneficial

for navigating, exploring, or manipulating parts of the robot. Some augmented reality

approaches have developed adjustable displays, but these are similar to the ones

described earlier [82, 92, 118, 119] which generate a complete 3D model of the remote

environment and allow the operator to experiment with possible commands. One

successful example of an adjustable display was presented by Suomela et al. where

they developed an augmented reality interface that presents a fully adjustable map

to an individual wearing a head-mounted display. One observation they had was

that users had preferences on the perspective with which they viewed the map. This

personal adaptation to fit needs is another advantage of an adjustable display.

3.2 Technology

With the requirements for useful displays set forth, we next present the

technologies we developed for useful displays along with the philosophies behind the

various technologies.

3.2.1 Information Storage

Transactive Memory

In order to discuss the implementation of information storage within a dis-

play we first look at the cognitive science notion of transactive memory. Transactive

memory is a term that was first introduced by Wegner as the “operation of the mem-

ory systems of the individuals and the process of communication that occur within

the group” [134]. In Wegner’s definition, he is referring to individuals as the storage
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Figure 3.2: Using snapshots to remember information.

container for this transactive memory. When someone has expertise in a field, then

a good friend of that individual can have access to the information by asking their

friend as opposed to remembering everything on their own. Thus, transactive memory

is a form of external memory. It is well known that people use external memory for a

variety of common memory tasks from appointments to shopping lists to daily events

recorded in a journal [49, 79, 134]. Examples of places where information is stored in

external memory include such things as a PDA, a calender, or even a scratch piece

of paper. In order to use these forms of external memory, it is important to have a

storage device in place that is easy to access. Then, the person desiring to find the in-

formation does not have to remember the details of the information itself, just where

to find it. This frees the person’s mind to focus on other tasks. Similarly, information

available to an operator in a human-robot team can be overwhelming unless the user

has a means to store the information in an easily accessible manner. One method we

have developed for storing information in the interface is via snapshots.

Snapshot Technology

The idea behind snapshots is that visual images contain a lot of information

that is understandable by a human, but not necessarily a computer. In human-

robot tasks that involve object recognition and recollection, it is important to aid
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the user by storing relevant information in the interface, rather than forcing the user

to mentally store the information. Consider the case of navigating a robot through

an environment looking for objects. Suppose that, at the end of the navigation, the

operator is required to tell an administrator, for example, where all of the blue boxes

in the environment are located. If the environment is sufficiently large, the operator

will likely forget where some of the objects were located. To aid the user in search

and identification tasks, we have created snapshot technology.

Snapshots are pictures that are taken by the robot and stored at the cor-

responding location in a map. In Figure 3.2 we show some snapshots taken from

the robot. In the figures, the robot took three pictures from three directions. The

pictures are used to show a panoramic view of the visual information around the

robot. To take a snapshot, a user indicates the request via a button on the joystick.

Upon receiving the user’s request, the robot saves the current image along with the

position and orientation of the robot when the picture was taken. The snapshot in-

formation along with the recorded pose of the robot is then returned to the interface

and displayed at the corresponding location and orientation in the operator’s view

of the map. In search or identification tasks, the snapshots in the display are an

implementation of the aforementioned transactive or external memory. By adding

the snapshots to the user’s perspective of the map, we make the visual information

available to the user whenever they need more information about a corresponding

place in the environment.

As an example of the usefulness of snapshot technology consider the follow-

ing. Suppose that part way through a patrolling task a supervisor asks if the operator

has seen anything suspicious. If the interface does not support snapshots, the user

will have to remember if they observed something, what it was, and where it hap-

pened, or they will need to revisit the place of interest. In contrast, by empowering

the user with the ability to record information directly into the display, the necessary

information is already correlated with the map of the explored environment. This

makes the recollection of a previous experience very accessible to the operator. Thus,
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snapshots provide one method to store information within a display. The introduc-

tion of snapshot technology leads us to a broader external storage medium, namely

semantic maps.

Semantic Maps

A relatively new approach to information storage is semantic maps. Se-

mantic maps can be thought of as a map of an environment that is augmented by

information that supports the current task of the operator. Semantics simply gives

meaning to something; therefore, a semantic map gives meaning to places on the

map. The information that is stored in a semantic map might include snapshots,

landmarks, icons, laser readings, sonar data, map information, or video. As an ex-

ample, consider an occupancy grid-based map. The map by itself does a good job of

portraying to the operator where the robot can and cannot go. However, with such

a map, the user and robot will have difficulty understanding where “Bob’s chair” is

located, or how to move to “Mike’s Door.” It is virtually impossible for the robot to

learn where Bob’s chair is without any user input. By placing semantic information

into the map and tying it directly to places in the environment, the human and robot

are able to reason about the environment semantically.

Principles of semantic maps have been addressed previously by other re-

searchers. Most notably, Kuipers introduced the notion of a spatial semantic hierarchy

as a model of large-scale space with both quantitative and qualitative representations.

The model is intended to serve as a method for robot exploration and map building

and a model for the way humans reason about the structure of an environment [70, 69].

Additionally, Chronis and Skubic have presented a system that allows a user to sketch

a map and a route for the robot to follow on a PDA [24]. This map and path are

an example of a semantic map where the map made of obstacles is augmented with

route information which gives the user an understanding of what the robot will be

doing.
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3.2.2 Information Integration

With the ability to store information inside the interface via snapshots,

landmarks, and icons, we next look to the requirement of integrating information

into a single display. The challenge with creating a single display is to combine the

important information that represents the remote environment into a single display

that is intuitive and supports efficient interaction with the remote robot [44, 110, 143].

To do this, we use an augmented virtuality display that combines informa-

tion from the map, robot, and video into a single display as shown in Figure 3.3. The

dark rectangles represent walls or objects identified by a mapping algorithm2 and a

model of the robot is rendered at its current location with respect to the discovered

map. The mapping algorithm creates an occupancy grid that represents whether each

cell in the grid is occupied in the world. This is not a 3D mapping algorithm, but

rather 2D information that is portrayed in 3D. The height we give to the 3D map

corresponds to the height of the laser range scanner and is used to make the obstacles

more obvious to the operator. The robot model is also scaled to match the size of the

actual environment, thereby enabling the user to comprehend the relative position of

the robot in the real environment.

A texture-mapped plane with the video stream is rendered a small distance

in front of the robot, perpendicular to the orientation of the robot [102]. As the robot

moves through the environment the visual information displayed by the texture map

is updated with the most recent camera image. Furthermore, the video is somewhat

transparent so information behind the video can still be seen. To inform the operator

of the pan and tilt orientations of the camera, we display the video stream perpendic-

ular to the camera’s orientation and at an angle relative to the real robot as shown

in Figure 3.4.

As discussed earlier, an important feature of an interface is the ability to

store information. When a snapshot is taken, it is saved as a texture and mapped to a

plane at the location from which the picture was taken. The snapshot looks similar to

the video but does not update as the robot moves. In addition to snapshots, we have

2The mapping algorithm was developed by Konolige at the Stanford Research Institute [64].
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Figure 3.3: Combining two dimensional video and map into a three dimensional,
mixed-reality display.

(a) (b) (c)

Figure 3.4: Perspectives of the camera orientation (a) normal, (b) panned left, and
(c) tilted down.
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Figure 3.5: Some icons, landmarks, and labels.

Figure 3.6: Waypoints used to designate a desired path for the robot to follow.

the ability to store landmarks or icons in the virtual environment using the mouse.

Some example icons may include “start”, “victim”, “land mine”, “waypoint”, and

“label” icons as shown in Figure 3.5. The label icons contain user editable text that

describes the thing or place visited, such as “Mike’s office”, “Anna’s chair”, or “Bob’s

desk” which ties meaning to a place in the environment. The user can also edit the

title on the other icons with the exception of the waypoint icon.3 As waypoints are

placed in the environment with the mouse, they are numbered in the order that they

are placed, making it easy for the operator to know the path the robot should traverse

(see Figure 3.6).

3A decision was made to only allow numbers on waypoint icons because waypoint icons disappear
when they have been visited by the robot and are therefore more temporary than the other icons.
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(a) (b)

(c) (d) (e)

Figure 3.7: Some different perspectives of the virtual environment: egocentric (a, b)
to exocentric (c, d, e) perspectives.

This augmented virtuality interface provides an intuitive integration of

most of the information necessary for human-robot interactions.

3.2.3 Adjustable Perspective

In addition to displaying the relevant information in a useful way, we also

desire that the interface be able to support the user in a variety of tasks. The

3D interface we created supports a dynamic, adjustable interface by allowing the

operator to zoom in the virtual perspective towards a robot’s egocentric view of

the environment and to zoom out to obtain an exocentric perspective or map-view.

Additionally, we allow the operator’s observation of the world to be disconnected

from the robot so that the user can revisit the environment without moving the

robot. Some of the possible perspectives of an environment are shown in Figure 3.7.

3.3 Summary

In this chapter we have presented requirements and technology for creating

a useful interface for teleoperating a remote robot. The requirements are that the

interface must support a) storing information, b) integrating similar information into
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a single display, and c) adjusting the perspective through which the operator views

the robot’s environment. A 3D augmented virtuality interface that fulfills these re-

quirements for a useful display has been described. The next two chapters present

user studies that quantify the value of the 3D interface over the 2D interface in certain

navigation and exploration tasks.
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Chapter 4

Navigation User Studies

One of the fundamental aspects of robot teleoperation is the ability to

successfully navigate a robot through an environment. We define successful navigation

to mean that the robot avoids obstacles and arrives at a destination in a timely

manner. In this chapter we present a series of user studies designed to evaluate an

operator’s ability to navigate a robot via a conventional 2D interface and the 3D

augmented-virtuality interface proposed in Chapter 3. For the remainder of this

discussion we will refer to the conventional interface as the 2D interface and we will

refer to the augmented-virtuality interface as the 3D interface. All of the user studies

were performed by novice operators who have had minimal experience with robots.

The user studies begin by reviewing a study by Ricks and continuing with

studies performed as part of this research. In Ricks’s experiment, the robot is navi-

gated along a path that is pre-determined and conveyed to the operator with instruc-

tions over a headset [101]. The next study looks at an operator’s ability to discover

the physical structure of an environment by building a complete map of the envi-

ronment. The following study compares the robustness of the interfaces to network

delay between the robot and the operator. The penultimate study addresses the use-

fulness of video and map information on a navigation task. The final experiment in

this chapter addresses the navigation of an ATRV-Jr Robot in a real environment.

We conclude this chapter with a discussion of the implications of the results of these

experiments.
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4.1 Path-Following Experiment

In the Human-Centered Machine Intelligence (HCMI) lab at BYU, when

we first started using a virtual 3D representation to visualize how information from a

robot could be displayed to make teleoperation easier, we looked at two approaches.

One approach was to present a local perspective of the immediate environment around

the robot based on the raw information from the most recent sensor readings (laser,

sonar, video). The other approach was to present a global perspective of the environ-

ment based on interpreting and combining the raw information into global information

(map, robot pose). Ricks focused on the local perspective of the immediate environ-

ment and the work presented in this dissertation focuses on the global perspective of

the environment. At the time, both approaches were implemented in simulation, but

the global map-based approach could not be implemented in the real-world because

we did not have a decent map-building algorithm.

The first navigational experiment comparing a conventional 2D interface

with an ecological 3D interface at Brigham Young University was done by Ricks using

a local perspective of the immediate environment [101]. The experiment design and

results are presented as they are related to the experiments we present. For a more

detailed report on the findings see [101, 102].

4.1.1 Framework

In this experiment, participants were asked to navigate a simulated robot

or a real Pioneer 2-DXE robot along a pre-planned path through a maze environment

as fast as they could. The path was given to the operator as a series of red dots in

the camera images plus verbal instructions about what to do when the robot reached

the next dot. In addition to completing mazes with the robot, a memory task was

devised to try and determine the amount of working memory required to use each

interface effectively. The two interfaces compared by Ricks are a conventional 2D

interface that had been previously used at the HCMI lab and the ecological (3D)

interface developed by Ricks (Figure 4.1).
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Figure 4.1: The interfaces used by Ricks in the path-following experiment. The left
image is the 2D (conventional) prototype and the right image is the 3D (ecological)
prototype. Images are from [101].

4.1.2 Results

Thirty-two participants completed the experiment in simulation and 8 com-

pleted the experiment with the real robot. The results show that, on average, par-

ticipants did much better with the 3D interface. Two of the most notable differences

are the number of people that crashed using each interface and behavioral entropy.1

In simulation, there were over 87% fewer collisions using the 3D interface

than the 2D interface. Additionally, more people were able to complete the tasks

in different environments without crashing at all using the 3D interface. Behavioral

entropy was also 31% lower with the 3D interface. Participants were able to complete

the task an average of 15% faster, and their average velocity increased approximately

9% when using the 3D interface in comparison to the 2D interface (see Table 4.1

from [101]).

With the real robot, participants took less than half the time to complete

the task with the 3D interface than with the 2D interface. Further, participants drove

almost twice as fast and had 93% fewer collisions with obstacles when using the 3D

interface than when using the 2D interface (see Table 4.2 from [101]). Additionally,

behavioral entropy was 23% lower with the 3D interface than the 2D interface.

1Behavioral entropy was first developed to estimate driver workload in an automobile driving
context [90]. Later it was used to measure human workload in HRI domains [46]. The metric
utilizes operator activity to estimate human workload.
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2D 3D
Interface Interface % Change p-value

Time to Completion(s) 249 212 -15% 8.5× 10−6

Average Collisions 7.4 0.94 -87% 2.2× 10−4

Average Velocity (m/s) 0.41 0.45 9.3% 2.3× 10−5

Average Memory Task 98.53 98.04 -0.50% 4.9× 10−1

Average Entropy 0.519 0.358 -31% 3.8× 10−15

Table 4.1: Objective results from the simulation portion of the path-following exper-
iment (from [101]).

2D 3D
Interface Interface % Change p-value

Time to Completion (s) 553 270 -51% 4.8× 10−3

Average Collisions 10.4 0.75 -93% 5.5× 10−3

Average Velocity (m/s) 0.14 0.26 86% 7.8× 10−4

Average Memory Task 85.88 95.86 12% 4.2× 10−2

Average Entropy 0.509 0.393 -23% 3.6× 10−2

Table 4.2: Objective results from the real world portion of the path-following exper-
iment (from [101]).

The subjective evaluations also consistently rate the 3D interface higher

than the 2D interface. Ricks observed that participants felt that navigation with the

3D interface was more easily learned, required less effort, and preferred over the 2D

interface in both the simulation and real world experiments [101].

4.2 Map Building Experiment

In the path-following experiment, the operator had to rely on current sensor

readings and instructions from a headset to navigate the robot successfully towards

the goal because there was no global representation of the environment. With a

laser range finder and an appropriate simultaneous localization and mapping (SLAM)

algorithm, a robot can build a map of an environment as the robot explores the

environment [64, 124]. The purpose of this map-building experiment is to compare

the usefulness of a 2D and 3D interface in a task where the operator is required

to discover the physical structure of an indoor environment. We hypothesized that
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Figure 4.2: The environment used for the map-building experiment.

with the 3D interface, an operator would be able to more quickly build a map of the

environment.

4.2.1 Framework

To perform the map-building experiment, we increased the robot’s abilities

by using Konolige’s map-building algorithm to construct a map of the environment

from laser range scans and the movement of the robot [64]. The constructed map

depicts the location of obstacles using an occupancy grid and shows the location of

the robot with respect to the obstacles.

The simulated environment that the operators were asked to explore is a

simple box-shaped environment with numerous obstacles of varying shapes and sizes

as shown in Figure 4.2. The distance between walls in this environment is at least

2.0 meters and the radius of the robot is about 0.6 meters. In contrast to Ricks’s

experiment, the task and environment do not dictate a prescribed exploration path,

which leaves to the operator the responsibility of a) recognizing where the robot has

and has not been, and b) making their own decisions on how to move the robot in

order to visit the entire environment.

For this experiment, video, map, and robot pose (position and orientation)

information are presented to the operator in order to make the interface as simple as

possible. Because of the limitation on the information presented to the operator and
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the existence of map-building, we used different prototype interfaces than the previous

experiment. The 2D interface that we used is designed to present information similar

to conventional interfaces [8, 16, 141]. The difference is that we limit the information

presented to only video, map, and robot pose. This is done to minimize information

that may or may not affect navigation.

The prototypes of the 2D interface and the 3D interface used for this

experiment are shown in Figures 4.3 and 4.4 respectively. The 3D interface differs

from Ricks’s experiment to better support map-building and recognition of the robot’s

location within the map. In the 3D interface, readings from the laser and sonar sensors

are not explicitly shown, instead we show the map which is an interpretation of the

laser readings. In particular, since an occupancy grid-based map-building algorithm

is used, we represent occupied grid-cells with a blue box (instead of a barrel). To

illustrate the robot with respect to the map, a simplified 3D model of the robot is

used instead of a red barrel. Similar to Ricks’s experiment, the perspective from

which the operator views the virtual world is slightly above and behind the virtual

robot. Both the 2D and 3D interfaces use the same simulated robot system, with the

same available information; the only difference is the manner in which the information

is presented to the operator.

To control the robot, participants used a Microsoft Sidewinder steering

wheel (Figure 4.5). Participants were verbally instructed on the use of the steering

wheel and pedals prior to operating the robot. Participants were informed that their

task was to discover the structure of the simulated environment and that the task

would be complete once they had built the entire map.

4.2.2 Results

This experiment took place as a special exhibit in “Cyberville” at the

St. Louis Science Center between April 30th and May 5th, 2005. Participants were

visitors to the science center who came from local schools and colleges. There were 60

individuals who participated in this experiment between ages 9 and 51 with an average
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Figure 4.3: The 2D prototype interface used for the map-building experiment.

Figure 4.4: The 3D prototype interface used for the map-building experiment.

Figure 4.5: The steering wheel used for the map-building experiment.
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and median age of 18 years. Thirty of the participants drove the robot with the 3D

interface and the other thirty participants drove the robot with the 2D interface.

Data collection began as soon as the operator started driving the robot

and ended when the operator completed the task or the robot became stuck in a wall

and could not be extricated.2 The data has been trimmed so that any delays before

moving the robot and any delays upon completion of the experiment are removed.

Furthermore, in the instances where the operator was unable to extricate the robot

following a collision with a wall, we trimmed the data immediately following the first

instance of the final collision. This limits our data to the time between the operator’s

beginning and final movements of the robot.

Throughout the experiment there were many instances when an operator

drove the simulated robot into a wall and was unable to extricate the robot and

therefore unable to complete the map-building task. Of the participants, 9 (30%)

were unable to complete the task with the 3D interface and 17 (57%) were unable to

complete the task with the 2D interface because of collisions with walls. Throughout

the remainder of this discussion, significance levels are determined using a two-tailed

unequal variance t-test with n = 13 samples with the 2D interface and n = 21 samples

with the 3D interface.3 For those who completed the experiment, the average time for

completion was 34% faster with the 3D interface than with the 2D interface (x̄3D =

178s, x̄2D = 272s, p = 3.4 × 10−4). Additionally, on average, operators drove the

robot 69% faster with the 3D interface4 than with the 2D interface. (x̄3D = 1.16m/s,

x̄2D = 0.69m/s, p = 1.6× 10−5).

We also observed that, on average, there were 66% fewer collisions with

the 3D interface than with the 2D interface (x̄3D = 5.1, x̄2D = 14.9, p = 2.6× 10−4).

Additionally, the robot maintained an average distance 16% further from walls (as

2There was a small problem in the simulator where the robot could be driven into a wall but not
be extricated from the wall. This happened most often when a collision occurred while the robot
was being driven backwards.

3The notation x̄condition is used to indicate the average result for a particular condition.
4The observation that the operators maintained an average velocity 69% faster but only finished

the task 34% faster with the 3D interface may seem confusing. The reason for this is that since there
was no designated path that the robot must take, operators most likely drove the robot a further
distance through the environment before finishing the task with the 3D interface.
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2D Interface 3D Interface % Change p-value

Time to Completion (s) 272 178 -34% 3.4× 10−4

Average Velocity (m/s) 0.69 1.16 69% 1.6× 10−5

Average Collisions 14.9 5.1 -66% 2.6× 10−4

Nearest Obstacle (m) 0.74 0.85 16% 4.2× 10−3

Table 4.3: Results from the map-building experiment.

measured by the distance to the closest obstacle) with the 3D interface than with

the 2D interface (x̄3D = 0.85m, x̄2D = 0.74m, p = 4.2× 10−3). The results from the

map-building experiment are summarized in Table 4.3 and Figure 4.6.

4.2.3 Discussion

One useful measure of navigation-relevant situation awareness is the per-

centage of time the operator navigated the robot in close proximity to walls. To create

this measure, we create the cumulative distribution function of the amount of time

that the operator spends driving within a given distance of any wall divided by the

total time the operator navigated the robot. Therefore, the first data point specifies

the percentage of time that the robot is touching a wall, the second data point spec-

ifies the percentage of time the robot is within 10cm of a wall, the third data point

represents the percentage of time the robot is within 20cm of a wall, and so on. To

analyze this data, participants are divided into four groups, based on whether or not

they finished the task and which interface they used. The four groups of users are:

• those that used the 3D interface and completed the task,

• those that used the 3D interface and crashed the robot,

• those that used the 2D interface and completed the task, and

• those that used the 2D interface and crashed the robot.

The results of the proximity analysis are shown in Figure 4.7.

This graph shows some interesting trends. First, the results suggest that

with the 2D interface, operators tend to spend a larger percentage of their time
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Figure 4.6: Results from the map-building experiment. Clockwise from bottom left:
number of collisions, time to completion, average velocity, and average distance to
nearest obstacle.

navigating the robot while it is actually touching a wall than with the 3D interface

(x̄3D = 5.1%, x̄2D = 14%, p = 8.6× 10−4).

Secondly, the results show that with the 2D interface, a larger percentage

of navigational time is spent with the robot closer to walls than with the 3D interface.

For example, the robot is within 40cm of a wall 15% of the time with the 3D interface

in comparison to 32% of the time with the 2D interface (n = 30, p = 3.0 × 10−6).

In fact, in this experiment we found that with the 3D interface, the percentage of

time that operators spent navigating the robot within 40cm of a wall is similar to the

percentage of time that operators with the 2D interface spent navigating the robot

while it was touching a wall (x̄3D40cm = 15.0%, x̄2D0cm = 14.5%, p = 0.872). When

coupled with the average number of collisions and the number of participants who
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Figure 4.7: Percentage of time the robot is navigated while in proximity to obstacles.

could not complete the experiment, these results suggest that operators are not as

aware of the robot’s proximity to obstacles with the 2D interface as they are with the

3D interface.

Third, the percentage of time the robot is in contact with a wall is similar

for the operators that crashed the robot and those that completed the task with the

3D interface (x̄3Dfinish = 4.7%, x̄3Dcrash = 5.5%, nfinish = 21, ncrash = 9, p = 0.767),

yet there is a significant difference between those that crashed the robot and those

that completed the task with the 2D interface(x̄2Dfinish = 8.6%, x̄2Dcrash = 19%,

nfinish = 13, ncrash = 17, p = 2.1×10−2). The difference between those who completed

the task and those who crashed in 2D suggests that there is a difference in skill among

the participants and the more skilled participants kept the robot further from walls

better than less skilled participants. With the 3D interface, however, there seems to

be very little difference between the performance of the participants who crashed the
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robot and the participants who completed the task, which suggests that less skilled

participants were able to perform similarly to more skilled participants.

4.3 Information Usefulness Experiment

In order to support an operator in navigational tasks it is important to

present navigation-relevant information to the operator. In remote mobile robot

navigation, it is common to use video and/or range information to inform the operator

of obstacles and available directions of travel [8, 16, 41, 42, 80, 141].

Both video and range information provide distinct sets of information that

have advantages and disadvantages for navigation tasks. For example, a video stream

provides a visually rich set of information for interpreting the environment and com-

prehending obstacles, but it is usually limited by a narrow field of view and it is often

difficult to comprehend how the robot’s position and orientation relate to an envi-

ronment. In contrast, range information is typically generated from IR sensors, laser

range finders, or sonar sensors, which detect distances and directions to obstacles

but do not provide more general knowledge about the environment. Advancements

in map-building algorithms [34, 64, 76, 85, 126] allow the integration of multiple

range scans into maps that help an operator visualize how the robot’s position and

orientation relate to the environment.

In the previous experiments described in this chapter, we used both video

and range information (current readings or a map) to navigate a robot (see Sec-

tions 4.1 and 4.2). During those experiments we observed that operators sometimes

focused their attention on the map section of the interface and other times focused

their attention on the section that contains the video. These anecdotal observations

lead to the question of how video and map information affect an operator’s ability to

navigate a robot.5

In this experiment we look at the usefulness of video and map information

as aids for navigation with both a side-by-side (2D) interface and an integrated (3D)

5Although the ways to combine maps and visualization tools have been studied in other domains
such as aviation (see, for example [22, 123]), this problem has not been well studied in human-robot
operation with occupancy grid maps.
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interface. We hypothesized that with 2D interfaces video would negatively influence

an operator’s ability to perform a navigation task because it does not provide suffi-

cient lateral information and it may draw the operator’s attention away from more

useful areas of the interface such as map or range information [68]. Furthermore,

we hypothesized that with a 3D interface, video information would not hinder nav-

igation when other range information is present. To explore the effect of range and

video information on navigation, we assess an operator’s ability to navigate a maze

environment with two interfaces (2D and 3D) and three conditions for each interface

(map-only, video-only, and map+video).

4.3.1 Framework

In order to provide a visually rich environment for this experiment, we

adopted a simulator based on the popular Unreal Tournament game engine as modi-

fied by Michael Lewis and colleagues at the University of Pittsburgh [75, 132]. Their

modifications originated with the intent of providing an inexpensive yet realistic sim-

ulator for studying urban search and rescue with mobile robots. The Unreal Tour-

nament game engine provides a rich visual environment that, when combined with

accurate models of common research robots and the game’s physics engine, provides

for a very good mobile robot simulator [74].

We used the Unreal Tournament level editor to create maze environments

that have the appearance of concrete bunkers filled with pipes, posters, windows,

wiring, and electronic devices to provide a visually rich environment for the robot

to travel through. Some pictures from the simulated environment are shown in Fig-

ure 4.8.

The experiment uses seven separate mazes that are designed to explicitly

test low-level navigation skills. There is only one path through each maze and no

dead-ends, but it takes considerable teleoperation skill to navigate a maze from start

to finish without hitting any walls. One of the mazes is used for training and the

other six mazes are used for testing. The training maze contains a continuous path

without an exit so that participants can practice driving the robot as long as desired.
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Figure 4.8: Pictures of the environment used for the information usefullness experi-
ment.
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Each maze is an 8x8 grid where each cell in the grid is 2x2 meters for a

total maze area of 256m2. Each maze is designed to have 42 turns and 22 straight

cells to minimize differences in results from different mazes (see Figure 4.9). The

simulated robot used for this experiment is a model of the ATRV-Jr robot and has a

width and length of 0.6 meters. Pictures of the robot in one of the mazes are shown

in Figure 4.10.

Figure 4.9: A map of one of the mazes used in the information usefulness experiment.

Figure 4.10: Pictures of the model of the ATRV-Jr robot used in the Unreal Tourna-
ment simulator.
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Instructions

Operators were instructed on how to drive the robot and how to perform

the experiment through speakers on a headset, and they were told that their goal

was to get the robot out of the maze as quickly as possible without hitting too many

walls.

Before testing, operators were given a chance to practice driving the robot

with both the 2D and the 3D interfaces. Each interface displayed both map and video

information. The operators were asked to drive at least once through the training

maze to ensure a minimum amount of training. Once an operator had completed

the training maze they were asked to continue practicing until they felt comfortable

controlling the robot with the interface (most participants stopped training at this

point). Following each training session and each experiment, participants were given a

questionnaire to evaluate their performance. The purpose of the questionnaires after

the training sessions was to familiarize the operators with the questions we would ask

after each experiment.

Secondary task

Shortly after the operator started driving the robot, we introduced a sec-

ondary task to the operator. The purpose of the secondary task is to fill the short

term memory of the operator and can be used as an indicator of excessive operator

workload [136].

For the secondary task, participants were told that they were to count the

number of times they heard a particular word spoken through the headset. The word

is selected randomly from a list of 20 words (See Table 4.3.1). Throughout training

and testing, randomly selected words are spoken once every three seconds. The word

of interest is spoken at intervals of 1-12 words with a new interval chosen every time

the word of interest is spoken. Upon completion of each test, participants were asked

to record how many times they heard the word of interest.
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algebra beluga binder caboose driving

eskimo falcon galoshes gazebo hallway

lettuce market mukluk pizza plethora

quickly racket title sunshine whistle

Table 4.4: List of words used for the secondary task.

Procedure

Once training was complete, each participant was asked if they had any

questions and they were told that the experiments would be very similar to the

training, except that the trial would begin with the robot in a room and end when

the robot exited the maze and that they would have different sets of information

visible on the interface for each test; specifically, participants were given conditions

of video-only, map-only, and map+video for both the 2D and 3D interfaces.

For testing, we used a within-subjects counter-balanced design where each

operator performed a test with each of the six conditions. The conditions were pre-

sented in a pseudo-random order with the constraints that the 2D and 3D interfaces

were used alternately. The interfaces for each of the six tests are shown in Figure 4.11.6

4.3.2 Results

Twenty-four participants were paid to navigate a simulated robot with the

six different conditions of information presentation. Participants were recruited from

the Brigham Young University community with most subjects enrolled as students.

Two participants terminated the experiment prior to completion of the six condi-

tions, but completed portions of the experiment were used for our analysis. We begin

by comparing the map-only and video-only conditions for both interfaces. We then

discuss how the map+video condition compares to the map-only and video-only con-

ditions for the two interfaces. We then discuss a learning effect that we observed with

6We performed the video condition test with both the 2D and the 3D interfaces because we did
not want to bias the operators feelings towards one type of interface as people tended to get quite
frustrated when driving with only video.
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Figure 4.11: The interfaces used for the video effect experiment. Clockwise from
bottom left: 2D video-only, 2D map-only, 2D map+video, 3D map+video, 3D map-
only, and 3D video-only.
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2D 2D
map-only video-only % Change p-value

Time to Completion (s) 258 366 42% 7.8× 10−4

Average Collisions 9.83 19.10 94% 1.3× 10−3

Average Velocity (m/s) 0.54 0.43 -20% 5.4× 10−5

Forward Velocity (m/s) 0.44 0.32 -27% 8.3× 10−5

Secondary Task Error 2.75 5.67 106% 1.6× 10−1

Table 4.5: Objective data comparing the 2D video-only condition with the 2D map-
only condition.

some of the conditions. We then present implications of the results of this experiment.

Throughout the discussion of the results, statistical significance is obtained with a

paired, two-tailed t-test with n = 24 samples unless otherwise specified.

Map-only vs. Video-only

In 2D, the video-only condition took significantly longer (42%) than the

map-only condition. Similarly, the map-only condition had an average velocity 20%

faster than the video-only condition and the robot’s forward progress through the

maze was 27% faster with the map-only condition than the video-only condition.

Additionally, there were nearly twice as many collisions with the video-only condition

as compared to the map-only condition. There was only marginal statistical difference

in performance on the secondary task. Table 4.5 summarizes the comparison of the

map-only and video-only conditions with the 2D interface.

In 3D, the video-only condition took 79% longer to finish the maze than the

map-only condition. Similarly, with the map-only condition the robot had an average

velocity 38% faster than the video-only condition and the robot’s forward progress

through the maze was 41% faster with the map-only condition. Additionally, with

the video-only condition, the robot collided with the walls, on average, eighteen times

more frequently than with the map-only condition. There were also four times the

errors in the secondary task with the video-only condition as opposed to the map-

only condition. Table 4.6 summarizes the comparison of the map-only and video-only

conditions with the 3D interface.
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3D 3D
map-only video-only % Change p-value

Time to Completion (s) 196 351 79% 1.6× 10−7

Average Collisions 1.25 22.71 1717% 1.3× 10−6

Average Velocity (m/s) 0.66 0.41 -38% 5.5× 10−12

Forward Velocity (m/s) 0.57 0.33 -41% 3.9× 10−12

Secondary Task Error 1.04 4.29 313% 2.5× 10−3

Table 4.6: Objective data comparing the 3D video-only condition with the 3D map-
only condition.

2D 3D
video-only video-only % Change p-value

Time to Completion (s) 366 351 -4.1% 0.662
Average Collisions 19.10 22.71 19% 0.175

Average Velocity (m/s) 0.43 0.41 -4.7% 0.198
Forward Velocity (m/s) 0.32 0.33 3.1% 0.613
Secondary Task Error 5.67 4.29 -24% 0.486

Table 4.7: Objective data comparing the video-only conditions for the 2D and 3D
interfaces.

One observation from Tables 4.5 and 4.6 is that the differences between the

map-only and video-only conditions are more profound with the 3D interface than

with the 2D interface. Note that the video-only conditions had very similar results

for both interfaces (see Table 4.7). The main difference is in the results from the map-

only condition where the 3D interface is better than the 2D interface. We discuss this

further in Section 4.3.3.

Map+video

We found that with both the 2D and 3D interfaces, the map+video condi-

tion had results that were more similar to the map-only condition in comparison to

the video-only condition.

In particular, with the 2D interface, we found that the map+video condi-

tion took slightly longer to complete than the map-only condition (5.1%, p = 0.189).

Additionally, forward progress through the maze (5.1%, p = 0.144) was slower and av-

erage velocity was slower (7.3%, p = 3.1× 10−2) with the map+video condition than
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with the map-only condition. There was also a non-significant difference between

the number of collisions with obstacles and the errors in the secondary task when

comparing the map-only and map+video conditions (see Table 4.8 and Figure 4.12).

With the 3D conditions, the results are similar to that of the 2D condi-

tions, except that there is stronger statistical evidence. In particular, the map+video

condition took 6.2% longer (p = 4.2 × 10−2), average velocity was 4.3% slower

(p = 6.1 × 10−2), and forward progress was 5.1% slower (p = 3.4 × 10−2) than the

map-only condition. Further, the average number of collisions was identical (1.25, p

= 1.0) between the map-only and map+video conditions and there was no statistical

difference in the errors of the secondary task (see Table 4.8 and Figure 4.12).

In general there is a slight or insignificant change in time to completion

when video information is added to map information for both the 2D and 3D in-

terfaces. However, there is a marginally significant learning effect that took place

with the 2D map-only condition and the 3D map+video condition. In particular, the

participants who used the 2D map-only condition after the 2D map+video condition

finished the task 14% faster than the participants who used the 2D map-only condition

before the 2D map+video condition (x̄2Dmap1 = 278s, x̄2Dmap2 = 238s, p = 9.5×10−2,

n = 12, unpaired t-test, see Table 4.9).

Similarly, the participants that used the 3D map+video condition after the

3D map-only condition finished the task 15% faster than the participants that used

the 3D map+video condition before the 3D map-only condition (x̄3Dmap+video1 = 225s,

x̄3Dmap+video2 = 191s, p = 1.2× 10−2, n = 12, unpaired t-test, see Table 4.10). There

was no significant difference between groups with the 2D map+video condition (2%,

x̄2Dboth1 = 269s, x̄2Dboth2 = 273s, p = 0.849, n = 12, unpaired t-test) and the 3D map-

only condition (.3%, x̄3Dmap1 = 195s, x̄3Dmap2 = 196s, p = 0.962, n = 12, unpaired

t-test).

When we compare the set of experiments in 2D where the map-only and

map+video conditions were used first (Table 4.9), we find that adding video to the

map has an insignificant effect. However in the set of experiments where the map-only

and map+video conditions are used second, we found that the map+video condition
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2D 2D
map-only map+video % Change p-value

Time to Completion (s) 258 272 5.1% 1.9× 10−1

Average Collisions 9.83 8.50 -14% 3.5× 10−1

Average Velocity (m/s) 0.54 0.50 -7.3% 3.1× 10−2

Forward Velocity (m/s) 0.44 0.42 -5.1% 1.4× 10−1

Secondary Task Error 2.75 1.79 -35% 2.2× 10−1

2D 2D
video-only map+video % Change p-value

Time to Completion (s) 366 272 -26% 2.1× 10−3

Average Collisions 19.10 8.50 -55% 1.6× 10−4

Average Velocity (m/s) 0.43 0.50 16% 1.9× 10−2

Forward Velocity (m/s) 0.32 0.42 30% 4.3× 10−4

Secondary Task Error 5.67 1.79 -68% 5.1× 10−2

3D 3D
map-only map+video % Change p-value

Time to Completion (s) 196 208 6.2% 5.1× 10−2

Average Collisions 1.25 1.25 0% 1.0× 100

Average Velocity (m/s) 0.66 0.63 -4.3% 6.1× 10−2

Forward Velocity (m/s) 0.57 0.54 -5.1% 3.5× 10−2

Secondary Task Error 1.04 0.91 -12% 7.4× 10−1

3D 3D
video-only map+video % Change p-value

Time to Completion (s) 351 208 -41% 1.8× 10−6

Average Collisions 22.71 1.25 -95% 1.1× 10−6

Average Velocity (m/s) 0.41 0.63 55% 9.8× 10−10

Forward Velocity (m/s) 0.33 0.54 62% 1.5× 10−10

Secondary Task Error 4.29 0.91 -79% 1.5× 10−3

Table 4.8: Comparison of the map+video condition to the map-only and video-only
conditions for the 2D and 3D interfaces.

First Second % Change p-value

2D map-only 278s 238s -14% 9.5× 10−2

2D map+video 269s 273s 1.7% 8.5× 10−1

% Change -3.1% 15%
p-value 7.4× 10−1 9.1× 10−2

Table 4.9: Time to completion in 2D after adjusting for learning.
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Figure 4.12: Average results for the video experiment.
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First Second % Change p-value

3D map-only 195s 196s 0.32% 9.6× 10−1

3D map+video 225s 191s -15% 1.2× 10−2

% Change -15% -2.7%
p-value 3.6× 10−2 6.3× 10−1

Table 4.10: Time to completion in 3D after adjusting for learning.

takes 15% longer to complete the task than the map-only condition. This suggests

that after accounting for learning, adding video to the map hurts navigation by in-

creasing the time it takes an operator to navigate the robot out of a maze (see

Figure 4.13).

When we compare the set of experiments in 3D where the map-only and

map+video conditions are used first (Table 4.10), we find that adding video to the

map increases the time to completion by 15.2%. However, in the set of experiments

where the map-only and map+video conditions are used second, we find the difference

in the time to complete the task is insignificant, which suggests that after accounting

for learning, adding video to the map in the 3D interface does not affect the time it

takes to navigate the robot out of the maze (see Figure 4.13).

Figure 4.13: Time to completion and average velocity after accounting for learning
in the video experiment.
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4.3.3 Discussion and Further Observations

These results suggest that video can hurt navigation when the video does

not contain sufficient navigational cues and video and map information are placed

side-by-side. Even when map information is present and more useful than video

for navigating, a novice operator’s attention tends to be drawn towards the video,

which, in this case, negatively affects their ability to navigate. These results make

sense in light of research done by Kubey and Csikszentmihalyi, which has shown that

television draws attention because of the constantly changing visual scene [68]. In

contrast, video does not negatively affect navigation when added to map information

with a 3D interface. This is because even though the video may not contain useful

information and may draw attention, the map is still readily visible to the operator

because it is presented integrated with the video.

We also observed that with the map-only and map+video conditions, op-

erators did much better using the 3D interface than the 2D interface. With the 3D

interface, operators finished the task at least 23% more quickly, with an average ve-

locity at least 22% faster. Additionally, there were at least 85% fewer collisions with

the 3D interface than the 2D interface and the operators had almost half the error7 on

the secondary task with the 3D interface. (See Table 4.11 for a detailed description of

the comparisons between the 2D and 3D interfaces. The charts are shown previously

in Figure 4.12).

Subjectively, 54% of the operators felt that the robot collided with walls

more with the video-only condition than either the map-only or map+video conditions

when using the 2D interface. With the 3D interface, 88% of the operators felt that the

robot collided with walls more with the video-only condition than either the map-only

or map+video conditions. Furthermore, 92% of the operators felt that they collided

more with the 2D interface than with the 3D interface in conditions other than video-

only. These evaluations match objective results discussed earlier. Operators also felt

that it was more frustrating to use the video-only condition in comparison to the

7Error is defined as the absolute difference between a participant’s answer to the number of times
the word was spoken and the actual number of times the word was spoken.
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2D 3D
Condition Interface Interface % Change p-value

Time to map-only 258 196 -24% 1.5× 10−6

Completion (s) map+video 271 208 -23% 5.9× 10−7

Average map-only 0.54 0.66 22% 5.5× 10−12

Velocity (m/s) map+video 0.50 0.63 26% 1.4× 10−7

Forward map-only 0.45 0.57 28% 9.9× 10−8

Velocity (m/s) map+video 0.42 0.54 28% 1.9× 10−8

Average map-only 9.83 1.25 -87% 1.7× 10−5

Collisions map+video 8.50 1.25 -85% 1.2× 10−8

Secondary map-only 2.75 1.04 -62% 1.5× 10−2

Task Error map+video 1.79 0.92 -49% 3.0× 10−2

Table 4.11: Comparison of the 2D and 3D interfaces with the map-only and
map+video conditions. Significance obtained from two-tailed t-test with n = 24
samples.

map-only and map+video conditions, and they felt that using the 2D interface with

the map-only and map+video conditions was more frustrating than using the 3D

interface with the same conditions.

Participants felt that with the map-only and map+video conditions, the

3D interface made better use of the information than the 2D interface, and that the

video-only conditions were lacking important information to navigate the robot, in

particular, information about obstacles to the sides of the robot. Furthermore, 23 out

of the 24 participants preferred the 3D interface with the map-only or map+video

condition over the 2D interface with the same conditions. Twenty-three of the twenty-

four participants also felt that they could get out of the maze faster while avoiding

walls better with the 3D interface and either the map-only or map+video condition in

comparision to the 2D interface with either condition. Figure 4.14 shows the results

of the questionnaire and Table 4.12 presents the statistics from the questionnaire.8

8Operators were asked how much they agreed or disagreed with statements including: Did you
have sufficient information to drive the robot, The robot did not have many collisions, and It was
frustrating to drive the robot. Numerical results are obtained from: 0 = Agree, 1 = Somewhat Agree,
2 = Neutral, 3 = Somewhat Disagree, 4 = Disagree.
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Figure 4.14: Subjective evaluations of the video effect experiment.

2D 3D
Condition Interface Interface % Change p-value

map-only 0.75 0.29 -61% 2.4× 10−3

Sufficient Info map+video 0.75 0.21 -72% 1.2× 10−3

video-only 1.90 1.71 -10% 4.9× 10−1

map-only 2.67 1.13 -58% 1.0× 10−4

No Collisions map+video 2.83 0.96 -66% 7.4× 10−6

video-only 3.71 3.76 1.3% 7.5× 10−1

map-only 2.21 3.42 55% 1.9× 10−5

Frustrating map+video 2.21 3.25 47% 2.1× 10−4

video-only 0.95 1.10 15% 5.5× 10−1

Table 4.12: Subjective results as obtained from the questionnaire.
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2D 240× 320 360× 480 480× 640 p-value

Time to Completion (s) 278 273 292 0.524
Average Velocity (m/s) 0.49 0.50 0.48 0.802

Average Collisions 5.30 9.67 5.67 0.190
Secondary Task Error 2.30 2.22 4.01 0.240

3D 240× 320 360× 480 480× 640 p-value

Time to Completion (s) 210 217 218 0.441
Average Velocity (m/s) 0.63 0.62 0.60 0.348

Average Collisions 1.17 0.67 0.50 0.296
Secondary Task Error 1.30 1.67 0.67 0.100

Table 4.13: Objective data for the video size experiment.

4.4 Video Size Experiment

As a follow up to the Information Usefulness experiment we also looked

at how the size of video affected an operator’s ability to navigate the robot. Our

hypothesis was that larger video would distract an operator more than smaller video

and would therefore lead to a decrease in performance. We performed a pilot study

with six participants where each used three different sizes of video for both the 2D and

3D interfaces. The video occupies approximately 240× 320, 360× 480, and 480× 640

pixels of the screen space.9 The environment for this experiment is the same as the

previous experiments using the Unreal Tournament game engine. Operators were

presented with the map+video condition for all test cases; the difference between the

conditions is that the video information is displayed in different sizes. The interfaces

that we used for the video size experiment are shown in Figure 4.15.

Results

We found only minimal and non-significant differences between the differ-

ent video sizes (see Table 4.4) so we did not pursue this study further. The difference

between the 2D and 3D interfaces for the different conditions is consistent with pre-

vious results.

9Approximate because the perspective of the video in 3D creates a warped trapezoid of the video.
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Figure 4.15: Interfaces used for the video size experiment. Clockwise from bottom
left: 2D(480 × 640), 2D(360 × 480), 2D(240 × 320), 3D(240 × 320), 3D(360 × 480),
3D(480× 640).
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4.5 Delay Experiment

Throughout our previous experiments, we have observed that people tend

to do much better with a 3D interface than a 2D interface. We feel that a large part

of this is because the operators are better able to understand the situation around

the robot. This situation awareness has three main aspects according to Endsley:

perception, comprehension, and projection [35]. In previous experiments we have

shown that operators seem to be better able to perceive and comprehend relevant

information for robot control from the environment when using the 3D interface as

opposed to the 2D interface. In this experiment, we look at an operator’s ability

to anticipate how the robot will respond to their commands while navigating the

robot with network delay. We hypothesized that the 3D interface would allow better

performance than the 2D interface for equal amounts of delay up to one second of

delay.

4.5.1 Framework

For this experiment we used the Unreal Tournament game engine mod-

ifications for our simulator. The experiment is designed and set up the same as

the previous Information Usefulness experiment, with the exception that instead of

changing the information visible on the interface, we changed the network delay from

when a command is issued to when the actions of the command are seen by the

operator. The three delay conditions used are: 0-seconds, 0.5-seconds, and 1-second.

Instructions

Operators were instructed on how to drive the robot and how to perform

the experiment through speakers on a headset. Operators were told that their goal

is to get the robot out of the maze as quickly as possible without hitting too many

walls. They were also informed that some of the conditions they would use had

network delay where it takes a short time for the operator to see the result of a

command given to the robot.
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Upon completion of the instructions, the operators are given a chance to

practice driving the robot with both the 2D and the 3D interfaces with map and video

information visible. The operators were asked to drive at least once through the train-

ing maze to ensure a minimum amount of training. Once operators had completed

the training maze they were asked to continue practicing until they felt comfortable

controlling the robot with the interface (again, most participants stopped training at

this point). Following each training session and each experiment, participants were

given a questionnaire to evaluate their performance.

Secondary task

A secondary task was used to fill the short term memory and increase the

workload of the operator [136]. Shortly after the operator started driving the robot,

we introduced the secondary task to the operator. We used the same secondary task

that was described in Section 4.3.1.

Procedure

Once training was complete, participants were asked if they had any ques-

tions and they were told that the experiments would be very similar to the training

they did except that the robot would begin in a room and end when the robot exited

the maze, and that there would be different amounts of delay during some of the tests.

There were six tests performed by each participant, 2D 0-seconds, 2D 0.5-seconds,

2D 1-second, 3D 0-seconds, 3D 0.5-seconds, and 3D 1-seconds. The 2D and 3D

interfaces for this experiment present both map and video information to the oper-

ator. The two interfaces used for the delay experiment are shown in Figure 4.16. A

counter-balanced random schedule was created with the constraint that the interfaces

(2D and 3D) were used alternately.
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Figure 4.16: The 2D interface (left) and the 3D interface (right) used for the delay
experiment.

4.5.2 Results

Eighteen people completed the delay experiment. We begin by discussing

results in detail then summarizing the meaning of the results. Throughout the dis-

cussion of the results, statistical significance is obtained through a paired t-test with

n=18 samples unless otherwise specified.

Time to completion

We found that operators were able to finish the navigation task 27%, 26%,

and 19% faster with the 3D interface than with the 2D interface for delays of 0,

0.5, and 1 second respectively (see Table 4.14 and Figure 4.17). Additionally, we

found that the results from the 3D conditions were comparable to results from the

2D conditions when the 2D conditions had a half of a second less delay than the 3D

conditions (see Table 4.14). For example, the 2D 0-seconds condition had an average

time of 302 seconds and the 3D 0.5-seconds condition had an average time of 311

seconds (3% slower, p = 0.639). Additionally, the 2D 0.5-seconds condition had an

average time of 422 seconds and the 3D 1-second condition had an average time of

466 (10% slower, p = 0.292). Furthermore, ten of the participants finished the 3D 0.5-

seconds condition faster than the 2D 0-seconds condition and six of the participants

finished the 3D 1-second condition faster than the 2D 0.5-seconds condition.
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Figure 4.17: Time to completion for the delay experiment.

2D Interface 3D Interface % Change p-value

0-seconds 302s 221s -27% 5.0× 10−5

0.5-seconds 422s 311s -26% 2.4× 10−4

1-seconds 578s 466s -19% 2.3× 10−3

Table 4.14: Time to completion statistics for the delay experiment.
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Average Velocity

We also found that the 3D interface produced average velocities that were

30%, 22%, and 18%10 faster than the 2D interface for the 0-seconds, 0.5-seconds, and

1-second conditions, respectively (see Table 4.15 and Figure 4.18). Again, we found

that results from the 3D conditions were comparable to results from the 2D conditions

when the 2D conditions had a half of a second less delay than the 3D conditions (see

Table 4.15). For example, the 2D 0-seconds condition had an average velocity of

0.46 m/s and the 3D 0.5-seconds condition had an average velocity of 0.47 m/s (1.7%

faster, p = 0.553). Additionally, the 2D 0.5-seconds condition had an average velocity

of 0.38 m/s and the 3D 1-second condition had an average velocity of 0.36 m/s (5.6%

slower, p = 0.493). Furthermore, thirteen participants drove faster with the 3D 0.5-

seconds condition than the 2D 0-seconds condition and eight participants drove faster

with the 3D 1-second condition than the 2D 0.5-seconds condition.

Figure 4.18: Average Velocity for the delay experiment.

10Only marginally significant
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2D Interface 3D Interface % Change p-value

0-seconds 0.46m/s 0.60m/s 30% 3.7× 10−4

0.5-seconds 0.38m/s 0.47m/s 22% 1.4× 10−3

1-second 0.31m/s 0.36m/s 18% 1.9× 10−1

Table 4.15: Average velocity statistics for the delay experiment.

2D Interface 3D Interface % Change p-value

0-seconds 10.6 1.7 -84% 9.9× 10−4

0.5-seconds 22.7 8.1 -65% 6.8× 10−3

1-second 38.6 28.4 -27% 1.2× 10−1

Table 4.16: Average collision statistics for the delay experiment.

Collisions

There was also an 84%, 65%, and 27% decrease in collisions with the 3D

interface in comparison to the 2D interface for the 0-seconds, 0.5-seconds, and 1-

second conditions, respectively (see Table 4.16 and Figure 4.19). In fact there were

marginally significant fewer collisions with the 3D 0.5-seconds condition than with

the 2D 0-seconds condition (−24%, x3D0.5−seconds
= 8.1, x2D0−seconds

= 10.6, p = 0.105).

There was a non-significant difference in the number of collisions with the 2D 0.5-

seconds condition and the 3D 1-second condition (p = 0.455). Furthermore, ten

participants had fewer collisions with the 3D 0.5-seconds condition than the 2D 0-

seconds condition and seven participants had fewer collisions with the 3D 1-second

condition than the 2D 0.5-second condition.

Additionally, operators spent more of their navigational time further from

obstacles with both the 3D 0-seconds and 3D 0.5-seconds conditions in comparison

to the 2D 0-seconds condition (see Figure 4.20).

Secondary task

In the secondary task, participants did marginally better with the 3D in-

terface than the 2D interface for the 0-seconds (43%, p = 6.8×10−2) and 0.5-seconds

conditions (29%, p = 0.119), see Table 4.17. We found that statistically, the 2D

0s-delay condition and the 3D 0.5s-delay condition had the most similar results with
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Figure 4.19: Average collisions for the delay experiment.

Figure 4.20: Percentage of time spent with the robot in close proximity to an obstacle.
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2D Interface 3D Interface % Change p-value

0-seconds 3.29 1.89 -43% 6.8× 10−2

0.5-seconds 4.53 3.22 -29% 1.2× 10−1

1-second 6.25 5.75 -8.0% 7.9× 10−1

Table 4.17: Secondary task error statistics for the delay experiment.

respect to the error in the task (x̄2D0−seconds
= 3.29, x̄3D0.5−seconds

= 3.22, p = 0.958).

The 2D 0.5-seconds condition had marginally fewer errors than the 3D 1-second con-

dition (x̄2D0.5−seconds
= 4.53, x̄3D1−second

= 5.75, p = 0.130).

Subjective results

Subjectively operators felt that they were better able to anticipate how

the robot would respond to their command with the 3D interface (see Figure 4.21),

which is also supported by the shorter times to completion. Participants felt that the

robot did not collide with as many walls with the 3D interface as it did with the 2D

interface (see Figure 4.22, which also correlates with the objective data). Thirteen

of the eighteen participants preferred the 3D interface over the 2D interface, and the

other five had no preference between the two interfaces. Twelve participants felt that

they could move the robot fastest with the 3D interface, with only one claiming the

2D interface was faster and the other five indicating the interfaces were about the

same. Twelve of the participants also felt the 2D interface was more affected by delay

than the 3D interface. Three felt that the 3D interface was more affected by delay

than the 2D interface and three indicated the affect of delay on the interfaces was

about the same.

4.5.3 Discussion

The results show that the 3D interface is consistently better than the 2D

interface across multiple levels of delay. Additionally, the 2D interface has results

similar to the 3D interface when the 3D interface has an additional half second of

delay. This suggests that the operator is better able to anticipate how the robot will
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Figure 4.21: Subjective results of the operator’s ability to anticipate how the robot
would respond to their commands.

Figure 4.22: Subjective results of the operator’s assessment of whether or not the
robot collided with the walls.
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respond to commands with the 3D interface than the 2D interface in a navigation

task. The difference between the 3D and 2D interfaces for similar levels of delay is

supported by the results from previous experiments.

From one perspective we can say that the 3D interface is more robust to

delay than the 2D interface because it allows similar results even though there is more

network delay. However, from another perspective, the rate at which performance

decreases as delay increases is similar for both the 2D and 3D interface. So the 3D

interface is not robust with respect to slowing the decrease in performance when delay

is increased.

4.6 Real-World Experiment

Previously we looked at the usefulness of video and map information and

the effect of network delay on navigation tasks with a remote mobile robot in simu-

lation. It is also useful to verify that the results and conclusions in simulation carry

over and are applicable to environments and robots in the real world. For this purpose

we have designed a follow-up experiment to compare the usefulness of video and map

information when navigating a robot in the real world.11 We hypothesized that the

results would be similar to the results from the Information Usefulness experiment in

Section 4.3.

4.6.1 Framework

For this experiment we converted part of the second floor of the Computer

Science Department at Brigham Young University into an obstacle course for our

robot to travel through. The normal hallway width is 2 meters and we used cardboard

boxes, Styrofoam packing, and other obstacles to create a 50 meter course which has

a minimum width of 1.2 meters. Figure 4.23 shows images of the robot and the two

hallways used in the experiment.

11Network delay was not explicitly tested because the communications over the wireless network
introduced erratic delay.
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The Robot

The robot we used for the experiment is an ATRV-Jr developed by IRobot

which is approximately 0.6 meters in width and 0.7 meters in length (see Figure 4.23).

The robot is equipped with 17 sonar-sensors around its perimeter, a laser range finder

located at the front of the robot and near the ground, and a pan-tilt-zoom camera

located on top of the robot. The robot uses a map-building algorithm developed by

Konolige at the Stanford Research Institute (SRI) to represent the environment and

localize the robot within the map of the environment [64]. The map-building algo-

rithm has been integrated with intelligence algorithms by David Bruemmer and Doug

Few at the Idaho National Laboratory (INL) to safeguard the robot from colliding

with obstacles as it is teleoperated [15, 16].

Specifically, the intelligence on the robot governs the speed at which the

robot can move forward based on the robot’s sensed proximity to obstacles and the

stopping time required to keep the robot safe from colliding with an obstacle. Further,

when the operator attempts to drive the robot into an obstacle, the intelligence on the

robot stops the robot and warns the operator that the robot is blocked by vibrating

the force-feedback joystick.

An operator controls the ATRV-Jr with a Microsoft Sidewinder 2 joystick12

(see Figure 4.24) and range and video information from the robot are presented to the

operator via our software which displays both a 2D and 3D prototype interface. The

3D interface is integrated with the INL base station which handles the communication

of movement commands and general information between the operator and the robot

via 900 MHz radio modems. Live video from the robot is transmitted to our interface

via 802.11b wireless Ethernet. Due to the use of a real robot in a building, the

information transmitted from the robot to the interface sometimes came erratically,

with delays up to two seconds. Minimal delays (< 0.25 seconds) were the norm and

large delays (> 1.0 seconds) were rare.

12The INL base station does not support the steering wheel we used in the simulated experiment.
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Figure 4.23: Images of the environment and the robot used for the real world exper-
iment.

Figure 4.24: The Microsoft Sidewinder 2 Joystick used to control the real ATRV-Jr
robot.
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The interfaces used for this experiment have been modified from the previ-

ous experiments by including icons that indicate where the robot’s intelligence identi-

fies obstacles that might interfere with robot movement. The interfaces used for this

experiment are shown in Figure 4.25.

Figure 4.25: The 2D interface (top) and 3D interface (bottom) used for the second
(real-world) video experiment.
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Procedure

Before using the robot, operators are trained with the Unreal Tourna-

ment training maze that we used in previous experiments. While training, operators

drove the simulated robot with a joystick for a few minutes with each of the five

testing conditions (2D map-only, 2D map+video, video-only13, 3D map-only, and

3D map+video). Upon completion of the training, the operators were moved to a

different base station which communicates with the real robot.

For testing, we used a within-subjects counter-balanced design where each

operator used all five conditions in a random order with the constraints that the 2D

and 3D interfaces were used alternately and the conditions were counter-balanced on

the order in which they were used. The experiment was setup such that an operator

would drive the robot through the obstacle course with one condition, then at the

end of the course an assistant would change the condition, turn the robot around,

reset the map information, and start the next test. After every two conditions the

robot was plugged in for three to five minutes to keep the batteries charged.

4.6.2 Results

Twenty-one participants were paid to navigate the ATRV-Jr robot with the

five different conditions of information presentation. Participants were recruited from

the Brigham Young University community, with most subjects enrolled as students.

The first three participants were used as part of a pilot study to determine a sufficient

complexity of the obstacle course and to determine how best to use the robot while

maintaining a sufficiently high charge on the batteries, therefore, their results were

not included as part of the analysis. Additionally, the robot’s responsiveness to

commands was adversely affected by low batteries in eleven of the testing conditions

(out of 90) therefore, this data was also discarded.

One of the differences between this experiment and the simulated exper-

iment is that the real robot has intelligence on board to protect itself from hitting

13We did not compare 2D and 3D video-only conditions because we found in the previous experi-
ment that the video-only condition was similar for both the 2D and 3D interfaces.
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Map-only Video-only % Change p-value

2D Interface 319s 243s -24% 1.6× 10−3

3D Interface 227s 243s 7.2% 6.0× 10−1

Table 4.18: Average time to completion in the real-world experiment.

Map-only Video-only % Change p-value

2D Interface 46.9 38.8 -17% 6.6× 10−1

3D Interface 28.6 38.8 35% 2.4× 10−2

Table 4.19: Average number of times the robot took initiative to protect itself in the
real-world experiment.

obstacles. For each test we record the number of times the robot acts to protect itself

and discuss these results as robot initiative. We begin by comparing the map-only and

the video-only conditions. We next discuss how the map+video condition compares

to the map-only and video-only conditions. Through the discussion, statistical sig-

nificance is determined using a paired, two-tailed t-test with n = 18 samples except

as otherwise noted.

Map-only vs. Video-only

With the 2D interface, there was not a significant difference in the number

of times the robot took initiative to protect itself with the map-only and video-only

conditions (see Table 4.19), but there was a significant difference in the time taken

to complete the task. In particular it was 24% faster to use the video-only condition

as opposed to the map-only condition (x̄map = 319s, x̄video = 243s, p = 1.6 × 10−3,

see Table 4.18).

With the 3D interface, there was not a significant difference in the time

to completion with the map-only and video-only conditions (see Table 4.18), but

the robot took initiative to protect itself 96% more frequently with the video-only

condition than with the 3D map-only condition (x̄map = 18.7, x̄video = 38.8, p =

2.4× 10−2, see Table 4.19).

The results of comparing the map-only condition to the video-only condi-

tion are different and nearly opposite of what we saw in the simulation experiment;

76



www.manaraa.com

video seems to be more useful than it was in simulation and map information (at

least in 2D interfaces) seems to be less useful. Most likely, the reason for the different

results between the simulated and real experiments is that the environment in the

real-world experiment provides more navigational cues that are visible in the video

stream than the environment in the simulation experiment. In the simulation exper-

iment, it was often the case that the video image was filled by a single wall and none

of the edges of the wall were visible. Further, the path through the simulation maze

doubled back on itself numerous times, so the operator could not see very far in front

of the robot. In contrast, in the real-world experiment, the edges of obstacles were

nearly always visible through the camera and the operator could see future parts of

the maze as most obstacles were not taller than the height of the camera and there

was only one 90 degree turn in the environment.

Map+video

When map and video information are combined using the 2D interface, we

found the results to be similar to the video-only condition with negligible difference

in the time to completion and the number of collisions.

When map and video information were combined using the 3D interface,

we found the number of collisions to be similar to the map-only condition but we

found that operators finished the obstacle course 9.6% faster with the map+video

condition in comparison to the map-only condition (x̄map+video = 205s, x̄video = 227s,

p = 4.6× 10−2 see Table 4.20 and Figures 4.26 and 4.27).

This result is interesting when combined with the simulation results be-

cause it suggests that when useful navigational information is available in both the

map and the video sets of information, the 3D interface supports the complementary

nature of the information and can lead to an improved performance over the indi-

vidual sets of information. In contrast, performance with the 2D interface seems to

be constrained by the best one can do with an individual set of information (either

map-only or video-only).
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2D 2D
Map-only Map+video % Change p-value

Time to Completion (s) 319 247 -23% 2.7× 10−2

Average Robot Initiative 46.9 36.3 -23% 8.4× 10−2

2D 2D
Video-only Map+video % Change p-value

Time to Completion (s) 243 247 1.6% 5.0× 10−1

Average Robot Initiative 38.8 36.3 -6.7% 6.7× 10−1

3D 3D
Map-only Map+video % Change p-value

Time to Completion (s) 227 205 -9.6% 4.6× 10−2

Average Robot Initiative 28.6 24.8 -13% 3.9× 10−1

2D 3D
Video-only Map+video % Change p-value

Time to Completion (s) 243 205 -16% 1.3× 10−2

Average Robot Initiative 38.8 24.8 -36% 1.1× 10−3

Table 4.20: Comparison of the map+video condition to the map-only and video-only
conditions from the real-world experiment.

Figure 4.26: Time to completion for the five conditions in the real-world experiment.
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Figure 4.27: Average instances of robot initiative for the five conditions in the real-
world experiment.

2D 3D
Condition Interface Interface % Change p-value

Time to map-only 319 227 -29% 4.5× 10−3

Completion (s) map+video 247 205 -17% 1.6× 10−2

Average Instances map-only 46.9 28.6 -39% 2.9× 10−2

of Robot Initiative map+video 36.3 24.8 -32% 7.5× 10−3

Table 4.21: Comparison of the 2D and 3D interfaces with the map-only and
map+video conditions in the real-world experiment.

2D vs. 3D

Similar to previous results, we found that operators performed significantly

better with the 3D interface than with the 2D interface for similar conditions. In

particular, with the map-only condition operators completed the task 29% faster and

had 39% fewer instances where the robot took initiative to protect itself. With the

map+video condition, operators completed the task 17% faster and had 32% fewer

instances of robot initiative (see Table 4.21).

4.6.3 Discussion

To determine an ordering of the usefulness of the conditions, we define

one condition to be better than another if all of the categories (time to completion

or robot initiative) are at least non-significantly different and one of the categories
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is significantly better. Conditions are considered equivalent if there is no statistical

difference in either category of analysis.

According to this criteria we found that when using the 3D interface, the

map+video condition is better than the map-only condition (because the task took

less time), and the map-only condition is better than the video-only condition (be-

cause there were fewer instances of robot initiative). These results suggests that when

there is useful navigational information in both the map and the video sets of infor-

mation, integrating the information can yield better results than using either map or

video individually.

We also found that when using the 2D interface, the map+video condi-

tion is similar to the video-only condition which are both better than the map-only

condition (faster time).

Interestingly, these results are different from our simulation studies where

we found the video-only condition to be significantly worse than the other conditions.

One complaint among participants with the 2D interface was that the map was too

small (although it was the same relative size as the previous experiment).

The results from the simulation experiments and the real-world experi-

ments show that map-only conditions can be more useful than video-only conditions

if the map resolution is of sufficient quality. Additionally, we have shown that video

is helpful in environments where there are navigational cues in the video information,

but video can diminish performance when there are no navigational cues and video

is placed side-by-side to map information.

4.7 Conclusions

In this chapter we have presented a series of user studies that compare an

operator’s ability to navigate a robot with a conventional 2D interface and our 3D

augmented-virtuality interface. We have compared the two interfaces in four domains,

a) path following, b) map building, c) effect of video, and d) effect of delay.

Our results indicate that, in general, the 3D interface yields better perfor-

mance than the 2D interface. In particular, we found that the 3D interface allows an
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operator to finish the task about 25% faster, while moving the robot about 25% faster.

Operators are also able to maintain a further average distance from walls, had nearly

80% fewer collisions, and spent a smaller percentage of their time in close proximity

to walls. We also found that operators were better able to perform secondary tasks

better and more accurately with the 3D interface. Subjectively, participants preferred

the 3D interface to the 2D interface twenty to one and felt that they did better, were

less frustrated, and better able to anticipate how the robot would respond to their

commands.

The ability of the operator to stay farther from obstacles with the 3D

interface is a strong indication of the operator’s navigational awareness. There is a

much lower rate of ‘accidentally’ bumping into a wall because the operator is more

aware of the robot’s proximity to obstacles, and the operator does a better job of

maintaining a safety cushion between the robot and the walls in the environment.

In 2D, different sets of information seem to compete for the operator’s

attention, with the caveat that video tends to draw attention towards itself despite its

relative usefulness. In other words, if video is more useful than a map, the performance

when using both map and video will be similar to using the video alone. If the video

is not useful (i.e. does not contain many navigational cues), using both map and

video will be less productive than using only the map because the video draws the

operator’s attention as described by Kubey and Csikszentmihalyi [68].

In 3D, the different sets of information seem to complement each other

with respect to operator’s attention. It is generally the case that the operator can do

better with both map and video information than video alone for navigation tasks.

Additionally, the 3D map seems to always be very useful for navigating a robot.

For design purposes, integrating maps with video in a 3D perspective seems

much better than presenting map and video side-by-side in a 2D perspective. Most

likely this is because the maps are always visible, even if the operator pays too much

attention to the video.
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Chapter 5

Exploration User Studies

In human-robot interactions (HRI), the interface is the means by which

an operator communicates with a remote robot. In order for the operator to issue

correct and informed directives to the robot, the operator must understand the robot’s

situation within the environment. For the operator to have an awareness of the robot’s

situation, it is important that information from the robot and the remote environment

be presented clearly to the operator.

Currently, many mobile robots for research and field applications imple-

ment pan-tilt cameras. Pan-tilt cameras allow an operator to overcome the limited

field of view of stationary cameras by adjusting the orientation of the camera. An

advantage of this is that the camera can be used to search an entire visual area in

front of and to the sides of a robot without moving the robot. This is particularly

useful in unstable environments such as urban search and rescue where too much

movement might cause structural damage. A pan-tilt camera could also be useful

in situations where there is significant visual information to the sides of the robot,

but it is easier or more efficient to navigate the robot along a forward path instead

of rotating the robot to see both sides. Some examples include warehouse inventory,

surveillance, patrolling, or reconnaissance tasks.

Despite the theoretical usefulness of a pan-tilt camera, experience has

shown that an adjustable camera orientation can contribute to an operator’s poor

situation awareness. Yanco et al. discussed situation awareness when four first re-

sponders teleoperated robots with some of their equipment [141]. In their studies

they found that despite spending a significant amount of time acquiring situation
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Figure 5.1: Visualizing the orientation of the pan-tilt camera using the 2D interface.

awareness by moving the camera, the first responders felt and demonstrated that

they had poor situation awareness.

Furthermore, at a robot competition where participants compete in a mock

search and rescue setting, the authors found that when the pan-tilt camera was used

it often lead to confusion about the state of the robot. For example, some participants

drove the robot forward thinking the robot would move in the direction the video was

facing even though the camera was panned to the side [33].

When a robot’s camera is panned to the side or tilted up, it is similar

metaphorically to a human turning or tilting their head [48]. With the robot distant

from the operator, it is important to convey to the operator the orientation of the

camera or “head” of the robot with respect to the orientation of the robot body

in order to satisfy the cues necessary for navigation while addressing the needs of

exploration.

Conventional interfaces provide pan-tilt information to the operator via

icons or horizontal and vertical bars overlaid on the video stream as shown in Fig-

ure 5.1. In contrast, the 3D interface provides visual support for the operator’s

comprehension of the camera orientation by rendering the image from the robot at

an angle that corresponds to the camera orientation as shown in Figure 5.2.

In this chapter we present a series of user studies designed to evaluate an

operator’s ability to search an environment with a pan-tilt camera on a mobile robot
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Figure 5.2: Visualizing the orientation of the pan-tilt camera using the 3D interface.

using a prototypical 2D interface and the 3D interface we have developed. First,

we present a study that compares the 2D and 3D interfaces in a visual search task

where the operators are asked to search all the walls of the environment. Second, we

present a study that compares the usefulness of a movable camera to a stationary

camera with both a 2D and a 3D interface. The final study compares how quickly an

operator can find and identify things in real and simulated environments using the

2D and 3D interfaces.

5.1 Pan-Tilt Camera: 2D vs. 3D

The purpose of this experiment is to compare how well a prototype 2D

interface and a 3D interface support the operator in a search task where a pan-tilt-

zoom (PTZ) camera is used. In particular we are interested in how quickly operators

can complete the task and how aware they are of the robot and its environment. We

hypothesized that the PTZ camera is more useful for performing a search task when

operators use the 3D interface as compared to a 2D interface.

5.1.1 Framework

To perform this experiment, we designed a task where operators were asked

to identify and count pictures on the walls of a simulated environment. The simulated
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environment contains light beige walls and the pictures of interest are dark blue so

there is a significant contrast between the two. Throughout the environment there

are sixteen different distracter pictures, none of which appear similar to the dark blue

picture of interest. The idea is that the operators should not have to look closely to

identify whether or not the picture is what they are looking for, they just need to

observe all the walls in the environment.

The simulated environments used for this experiment have a simple under-

lying navigational structure, but are complicated by the addition of large rooms and

dead-end hallways. Therefore, if the operator were to navigate the robot to look at

every wall without moving the camera, the task would take significantly longer than

if they navigate along the structure of the environment while moving the camera to

look down hallways. The purpose for this design is to encourage the use of the PTZ

camera.

The experiment is setup such that the operator first practices driving and

using the camera with either the 2D or the 3D interface. Then after the operators are

trained and feel comfortable with the robot controls, and any questions are answered,

they are given a test using the same interface they practiced with but in a slightly

larger environment. The participant is told to traverse the environment as quickly as

possible while making sure to count all the blue signs. Upon completion of each test

we record the number of pictures that were found and have the operator fill out a

survey to subjectively evaluate their performance. The process is then repeated with

the other (2D or 3D) interface. An example training world and test world are shown

in Figures 5.3 and 5.4 respectively.

In these figures, the dots near the walls indicate the locations of the pictures

and the dot and arrow in the middle of the hallway indicate the starting position

and orientation of the robot. The path shows the simple underlying structure of

the environment. The operator navigates the robot with a force feedback Microsoft

Sidewinder Steering Wheel. The pan and tilt of the camera are controlled with

buttons on the wheel, and the robot is controlled with the pedal and the steering

wheel as shown in Figure 5.5.
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Figure 5.3: One of the training worlds used for the experiment.

Figure 5.4: One of the testing worlds used for the experiment.

Figure 5.5: The Microsoft Sidewinder Wheel and pedal and the controls used for the
experiment.
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The two interfaces used for this study present the same information avail-

able to the operator, but in different forms. This information is video, map, robot

pose, and camera orientation. The design of the software is such that all aspects of

the human-robot system are the same except for the manner in which the informa-

tion is presented to the operator. The 2D interface for this experiment is a prototype

interface that displays relevant information similar to conventional human-robot in-

terfaces [141, 16, 8], but it has been simplified to show only video, map, robot pose,

and camera orientation. The 3D interface is similar to the ones used in the previous

chapter with the addition of the pan-tilt information. The two interfaces used for this

experiment are shown in Figure 5.6.

5.1.2 Results

Fifteen participants completed the tests for this experiment. Seven of the

participants used the 3D interface first and eight used the 2D interface first. We

continue with a discussion of the results as they relate to performance and workload

and we present the subjective evaluations as they relate to the objective results.

Throughout our discussion, statistical significance is obtained through a paired t-test

with n = 15 samples.

Performance

Participants were able to complete the task nearly 20% faster, on average,

with the 3D interface in comparison to the 2D interface (x̄3D = 267s, x̄2D = 332s,

p = 4.3 × 10−2). There was no statistical difference in the average number of blue

signs reported when using each of the interfaces (x̄3D = 5.8, x̄2D = 5.5, p = 0.709)

Additionally, the average time in contact with walls was 89% less with the 3D interface

than with the 2D interface (x̄3D = 4.1s, x̄2D = 36.2s, p = 8.5 × 10−4). Moreover,

on average the robot was 20% further from a wall with the 3D interface than with

the 2D interface (x̄3D = 0.80m, x̄2D = 0.64m, 1.0 × 10−3). Table 5.1 summarizes

the objective results from the experiment. The results also indicate that, on average,

10% of the time with the 2D interface was spent with the robot actually touching a
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Figure 5.6: The interfaces used for the experiment, the 2D interface (top) and the 3D
interface (bottom).
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2D 3D
Interface Interface % Change p-value

Time to Completion (s) 332 267 -20% 4.3× 10−2

Items Found (error) 0.80 0.86 8.3% 7.7× 10−1

Time touching a wall (%) 10.4 1.60 -84% 4.5× 10−5

Nearest Obstacle (m) 0.64 0.80 25% 1.0× 10−3

Average Pan-tilt commands 2.49 3.75 50% 3.9× 10−4

Table 5.1: Summary of objective results for the 2D vs. 3D experiment.
.

Figure 5.7: Percentage of time the robot is less than one meter from the wall.

wall, this is in contrast to only 1.6% of the time with the 3D interface (84% less, p

=4.5× 10−4). Figure 5.7 shows the percentage of time that an operator is navigating

the robot within one meter of a wall. The graph shows that more time is spent closer

to walls when using the 2D interface in comparison to the 3D interface.

There was a marginally significant learning effect observed between the

group of participants that used the 3D interface first and those that used the 3D

interface second. In particular, the group that used the 3D interface second finished

28% faster than the group that used the 3D interface first (x̄3Dfirst
= 314s, x̄3Dsecond

=

226s, p = 0.157, nfirst = 7, nsecond = 8, unequal variance t-test). The standard

deviation also decreased by more than half (s3Dfirst
= 139s, s3Dsecond

= 54s).
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Figure 5.8: Average time to complete the experiment based on which interface was
used first.

In contrast, there was no difference in time to completion between partic-

ipants who used the 2D interface first and those who used it second (x̄2Dfirst
= 331s,

x̄2Dsecond
= 333s, p = 0.968, nfirst = 8, nsecond = 7, unequal variance t-test). There

was, however, a decrease in the standard deviation of nearly half (s2Dfirst
= 142s,

s2Dsecond
= 74s); see Figure 5.8.

The decrease in the standard deviations of the second interfaces suggests

that the operators have improved their ability to use the robot as would be expected

with more experience. The improvement in the 3D interface when it is used second

supports this. However, we would also expect to see a more substantial increase in

the performance of the 2D interface when it is used second. The reason we do not

see this improved performance in 2D is because the interface is simply harder to use.

Workload

Workload was difficult to measure because of the complexity of the task.

Each participant had their own unique way of using the robot and the camera to

observe the environment. Therefore, measures involving the robot control (such as

steering wheel bandwidth, average velocity, average angular velocity, or behavioral
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Figure 5.9: The number of pan and tilt commands issued to the robot per second
based on which interface was used first.

entropy) did not reveal useful comparisons of the workload of the operator. Instead,

we looked at the number of pan and tilt commands that the operator issued to the

robot. The results show that, on average, the operator was able to issue 3.7 commands

per second with the 3D interface in comparison to only 2.5 commands per second with

the 2D interface. This indicates that the user was able to issue 33% (p = 1.0× 10−3)

more camera movement commands with the 3D interface while finishing the task

faster. Additionally, when the 3D interface was used first. there were nearly twice as

many commands issued as when the 2D interface was used first. This suggests that

the PTZ camera was more easily used with the 3D interface and that it required more

effort to use the camera with the 2D interface (see Figure 5.9).

The difference in the rate that pan-tilt commands were issued also suggests

that participants felt more comfortable with their ability to navigate the robot with

the 3D interface than the 2D interface, so more time could be spent manipulating the

camera.
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2D 3D % Change p-value

Required effort 6.9 4.9 -30% 5.8× 10−3

Difficult to learn 5.9 3.6 -39% 3.9× 10−4

Effect of camera pose 6.4 3.7 -43% 6.9× 10−3

Confidence in robot 6.5 8.1 25% 5.4× 10−2

Comprehend camera pose 6.3 8.1 27% 4.0× 10−2

Table 5.2: Summary of the subjective results for the 2D vs. 3D experiment.
.

Subjective Evaluations

Subjective evaluations were obtained through surveys following each par-

ticipant’s use of each interface. The surveys indicate that, in general, participants

felt that the 3D interface required less effort to use and was easier to learn. The

participants also noted that they better understood the orientation of the camera

and that panning and tilting the camera affected their navigation abilities less with

the 3D interface than with the 2D interface. Table 5.2 and Figure 5.10 summarize

the results of the survey. Fourteen of the fifteen participants felt they did better with

the 3D interface and preferred it over the 2D interface. Only two of the users thought

the 2D interface was more intuitive, but even one of these users commented, “It was

confusing to have the map and video integrated. If I spent more time with [the 3D

interface] I would probably prefer it”.

The subjective evaluations match well with the objective evaluations of

the experiment. Our discussion of the different workload between the interfaces is

backed up by the surveys where, on average, the operators ranked the required effort

as two points lower (on a scale of 1-10) with the 3D interface (x̄2D = 6.9, x̄3D = 4.9,

p = 5.8 × 10−3). Participants also ranked the effect of the camera orientation on

driving as almost three points lower with the 3D interface (x̄2D = 6.4, x̄3D = 3.7,

p = 6.9 × 10−3). The surveys also revealed a higher confidence in robot movement

and better comprehension of the camera orientation with the 3D interface.
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Figure 5.10: Results from the subjective evaluation of the interfaces.

5.1.3 Discussion

The manner in which the operators used the PTZ camera varied signifi-

cantly even between the first and second tests for each participant. The reason for

this is that the training session was not long enough and the operators were still

experimenting and learning how to use the pan and tilt on the camera throughout

the first experiment and into the second experiment.

These results suggest that the 3D interface makes it easier to use a PTZ

camera than the 2D interface. In particular, operators were better able to keep the

robot away from walls and finish the task faster—both of which are important for

exploration tasks.

5.2 When to Use a Pan-Tilt Camera

One question when using a robot to perform search tasks is whether or

not it is more efficient to use a pan-tilt camera or just maneuver the robot to look

in various directions. The previous experiment showed that the 3D interface was

94



www.manaraa.com

more useful than the 2D interface when using a pan-tilt (PTZ) camera, but it did

not reveal whether a PTZ camera was useful in comparison to not having one. The

purpose of this experiment is to compare the usefulness of the 2D and 3D interfaces

while searching for things with and without a pan-tilt camera. We hypothesized that,

for both interfaces, it is more efficient to use a pan-tilt camera than to turn the robot

in certain environments.

5.2.1 Framework

For this experiment, we created two simple simulation environments for

driving the robot. Both environments have a box shape with six dead-end hallways

on the outside and six dead-end hallways on the inside of the environment and are

designed to exploit the use of a pan-tilt camera. The environments are shown in

Figure 5.11. At the end of 8 of the 12 dead-end hallways are flags that operators were

asked to find. The operators were told that they only had to look at the flag and that

they did not need to drive over the flag or go near the flag.

Figure 5.11: Simulation environments used in the St. Louis Science Center exploration
tasks.
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This experiment took place as part of a week-long special event in ’Cy-

berville’ of the St. Louis Science Center between April 30th and May 5th, 2005. The

organization of the experiment and the time spent with each volunteer was largely

constrained by the volume of traffic at the Science Center. In particular, if there were

a lot of people waiting to participate, we kept each person for only one test instead

of two. Some participants used only a robot with a movable (pan-tilt) camera and

others used only a robot with a stationary (non pan-tilt) camera. Operators used the

Microsoft Sidewinder Steering Wheel to drive the robot and control the camera. Due

to limitations on time available with each individual, participants were not allowed

to practice driving the robot. The instructions were explained and when they were

ready the test began.

Participants who used a robot with a stationary camera were advised that

a good strategy for using the robot was to drive forward then, when the robot reaches

a hallway, turn the robot to look down the hallway, observe whether or not there is

a flag, then turn back and continue around the maze. Participants who used a robot

with a movable camera were advised to keep the robot in the middle of the main hall

and turn the camera to look down each side hall as opposed to turning the robot to

look down the side halls.

5.2.2 Results

There were 88 participants who drove the robot with a stationary camera

(half with the 2D interface and half with the 3D interface). Additionally, 44 more

participants drove the robot with both the 2D and 3D interfaces with a movable

camera. Participants were between 10 and 46 with an average and median age of 18.

Of the participants, 28 (64%) finished the 2D stationary camera test, 37 (84%) finished

the 3D stationary camera test, 25 (57%) finished the 2D movable camera test, and 39

(89%) finished the 3D movable camera test. The results of the experiments where the

operator did not complete the task were not used for the analysis. Throughout the

discussion, statistical significance is obtained with an unequal-variance t-test unless

otherwise indicated.
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2D Stationary Movable
Camera Camera % Change p-value

Time to Completion (s) 249 250 0.30% 9.7× 10−1

Average Velocity (m/s) 0.43 0.25 -42% 2.1× 10−4

Distance Traveled (m) 107.8 63.1 -41% 3.1× 10−6

Table 5.3: Objective results for the 2D interface with a movable and a stationary
camera.

Stationary camera vs. moving camera

With the 2D interface, participants averaged similar times to completion

with a stationary camera as with a movable camera. This is interesting, because

although the robot traveled 41% less distance with the movable camera than with

the stationary camera (x̄2Dno ptz = 107.8m, x̄2Dptz = 63.1m, p = 3.1× 10−6, nnoptz =

25, nptz = 28), the average velocity was also 42% slower (x̄2Dno ptz = 0.43m/s, x̄2Dptz =

0.25m/s, p = 2.1 × 10−4, nnoptz = 25, nptz = 28). So, although the robot travels

less distance with the movable camera, it travels significantly slower and the task

requires the same amount of time as when using the stationary camera (see Table 5.3).

Figure 5.12 illustrates actual paths used by the robot with and without a movable

camera.

The 3D interface, on the other hand demonstrated an average time to

completion 13% faster with the movable camera in comparison to the stationary

camera (x̄3Dno ptz = 181s, x̄3Dptz = 157s, p = 4.4× 10−2, nnoptz = 37, nptz = 39). The

reason for this is that although the robot with the movable camera travels 41% less

distance, on average, than the robot with the stationary camera (x̄3Dno ptz = 110.4m,

x̄3Dptz = 65.6m, p = 4.8 × 10−8, nnoptz = 37, nptz = 39), the average velocity only

drops by 31% (x̄3Dno ptz = 0.61m/s, x̄3Dptz = 0.42m/s, p = 4.8 × 10−3, nnoptz =

37, nptz = 39). Therefore, the time to completion is faster because the decrease in

distance traveled is more than the decrease in average velocity (see Table 5.4).

Another related observation is the percentage of time that the operator

spends moving the robot (not the camera). For the 2D interface, 27% less time is

spent driving the robot when the movable camera is used as opposed to the stationary
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Figure 5.12: Paths taken with different interfaces and camera conditions. Clockwise
from bottom left: 3D-noPTZ, 2D-noPTZ, 2D-PTZ, 3D-PTZ.

3D Stationary Movable
Camera Camera % Change p-value

Time to Completion (s) 181 151 -13% 4.4× 10−2

Average Velocity (m/s) 0.607 0.416 -31% 4.8× 10−3

Distance Traveled (m) 110.4 65.6 -41% 4.8× 10−3

Table 5.4: Objective results for the 3D interface with a movable and a stationary
camera.
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Figure 5.13: Time to completion and average velocity for the different interfaces and
cameras.

camera (x̄2Dno ptz = 87%, x̄2Dptz = 63%, p = 6.7 × 10−8, nnoptz = 25, nptz = 28). For

the 3D interface, 23% less time is spent driving the robot when the movable camera

is used in comparison to the stationary camera (x̄3Dno ptz = 92%, x̄3Dptz = 71%, p =

3.2× 10−10, nnoptz = 37, nptz = 39). Charts representing the time to completion and

the average velocity for the different interfaces and cameras are shown in Figure 5.13.

When considering navigational awareness, operators tended to drive more

safely with the movable camera than without for both interface conditions; however,

the differences are more pronounced with the 3D interface. In particular, with the

2D interface there were 46% fewer collisions under the movable camera condition

(x̄2Dno ptz = 11.1, x̄2Dptz = 6.0, p = 7.9 × 10−2, nnoptz = 25, nptz = 28) and the

percentage of time in contact with a wall was 45% lower (x̄2Dno ptz = 6.4%, x̄2Dptz =

3.5%, p = 7.6× 10−2, nnoptz = 25, nptz = 28). There was virtually no difference in the

average distance to the nearest wall under the two camera conditions when using the

2D interface (see Table 5.5).

With the 3D interface, there were 86% fewer collisions when using the

movable camera as opposed to the stationary camera (x̄3Dno ptz = 4.11, x̄3Dptz = 0.56,

p = 2.4 × 10−2, nnoptz = 37, nptz = 39) and the percentage of time in contact with

a wall was 86% lower as well (x̄3Dno ptz = 2.8%, x̄3Dptz = 0.40%, p = 2.1 × 10−3,

nnoptz = 37, nptz = 39). Additionally, the robot maintained a distance 8% farther from
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2D Stationary Movable
Camera Camera % Change p-value

Average Collisions 11.1 6.04 -46% 7.9× 10−2

Time Touching a Wall (%) 6.4 3.5 -45% 7.6× 10−2

Nearest Obstacle (m) 0.80 0.81 1.4% 7.7× 10−1

Navigation time (%) 87 63 -27% 6.7× 10−8

Table 5.5: Navigation awareness results for the 2D interface with a movable and a
stationary camera.

3D Stationary Movable
Camera Camera % Change p-value

Average Collisions 4.11 0.56 -86% 2.4× 10−3

Time Touching a Wall (%) 2.8 0.40 -86% 2.1× 10−3

Nearest Obstacle (m) 0.88 0.95 8% 2.1× 10−3

Navigation time (%) 92 71 -23% 3.2× 10−10

Table 5.6: Navigation awareness results for the 3D interface with a movable and a
stationary camera.

walls with the movable camera than with the stationary camera (x̄3Dno ptz = 0.88m,

x̄3Dptz = 0.95m, p = 2.1× 10−3, nnoptz = 37, nptz = 39); see Table 5.6.

2D vs. 3D

Similar to previous results, participants who used the 3D interface per-

formed considerably better than those who used the 2D interface. Table 5.7 summa-

rizes the comparison between the 2D and the 3D interface.

Another observation with respect to navigational awareness is the per-

centage of time that the robot is in proximity to walls. Figure 5.14 illustrates the

percentage of time that the robot is within a given distance of a wall. The figure

shows that the 3D interface with and without a movable camera maintains a safer

distance from walls than the 2D interface with either camera condition. This suggests

that the 3D interface tends to help the operator keep the robot safer regardless of

whether or not a pan-tilt camera is available.
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2D 3D
Camera Interface Interface % Change p-value

Time to Stationary 249 181 -27% 4.3× 10−5

Completion (s) Movable 250 157 -37% 7.7× 10−7

Average Stationary 0.433 0.607 40% 6.3× 10−2

Velocity (m/s) Movable 0.253 0.416 65% 7.7× 10−7

Average Stationary 11.1 4.11 -63% 9.9× 10−3

Collisions Movable 6.04 0.56 -91% 1.9× 10−3

Nearest Stationary 0.80 0.88 10% 1.2× 10−2

Obstacle (m) Movable 0.81 0.95 17% 9.2× 10−6

Navigation Stationary 87 92 7% 3.4× 10−3

Time (%) Movable 63 71 12% 6.1× 10−2

Table 5.7: Summary of results comparing the 2D and 3D interfaces when used with
movable and stationary cameras.

5.2.3 Discussion

In this experiment, we found that using a movable camera did not improve

the time to complete a search task when using the 2D interface. This result is some-

what surprising considering that the environment for the experiment was designed to

exploit the use of a pan-tilt camera. The reason for the similar performance with the

2D interface is that operators spend a smaller percentage of their time moving the

robot (which results in a lower average velocity) when a movable camera is available.

Even though the underlying structure of the environment was very simple, operators

tended to stop driving the robot when they were using the camera to look down

hallways.

With the 3D interface, participants were able to finish the task somewhat

faster when using a movable camera because they spent a larger portion of their

time navigating the robot, even while using the camera. This led to a faster average

velocity.

We also observed that operators tended to stay further from walls and

spend less time in proximity to walls when using a movable camera in comparison

to a stationary camera. There were also significantly fewer collisions when using the
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Figure 5.14: The percentage of time the robot is within a given distance of a wall.

movable camera in comparison to the stationary camera. These differences were more

pronounced with the 3D interface than with the 2D interface.

5.3 Find the Foo Experiment

Previously, we have shown that an operator can navigate a robot faster

and safer and use a movable camera more efficiently with a 3D interface as opposed

to a 2D interface. The purpose of this experiment is to test how well operators can

use a robot and a pan-tilt camera to find and identify things in an environment. We

hypothesized that the 3D interface would provide better performance for exploration

than the 2D interface.

5.3.1 Framework

This experiment is designed to employ both a simulation study and a real

world study. The purpose for integrating the real and simulated portions of the

experiment is that we found the real robot works best when we drive it for up to

30 minutes, then let it recharge for 30 minutes before driving it again. While the
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robot is recharging, we have participants perform a similar exploration experiment in

simulation.

The simulation experiment

The simulation experiment is setup as a scenario where a robot is used

to explore an underground cave before sending in rescuers. We used the Unreal

Tournament game engine for our simulator and we used the Unreal Tournament level

editor to create a maze that has the appearance of an underground cave that is filled

with boxes and prison cells. The task of the operator is to drive the robot through the

environment and identify places and victims. If victims are found, we are interested

in where they are located and what they are wearing. The places are identified by

whether or not jail bars are visible.

The main level of the environment for this experiment is setup as a circular

maze with numerous dead-end hallways protruding out of the center of the maze. At

the end of each hallway is a jail cell that is partially obscured by many boxes. The

normal width of each hallway is 4 meters across, but has been reduced to 2-3 meters

because of the numerous boxes in the environment. Figure 5.15 shows a map of the

main floor.

In the center of the maze, there is a room with a glass floor and open ceiling

to allow the operator to see the levels above and below the main floor through the

robot camera. Above and below the main level there are eight more areas that also

need to be examined and classified by the operator. Additionally, the center of the

main floor is covered with boxes, which make visibility more difficult and requires the

operator to maneuver the robot in order to see all the information on the different

levels. Figure 5.16 shows some pictures of the simulated environment.

In some of the jailed rooms, we placed “victims” for the robot to find.

The victims we used as prisoners are 3D models created by Michael Lewis for the

USAR-simulator (see Figure 5.17). There is at most one victim in each cell and they

are placed in either a standing, sitting, or reclining position. Each victim is visible

from someplace that the robot can reach.
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Figure 5.15: Map of the main floor of the simulation environment.
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Figure 5.16: Images of the environment used for the simulation experiment.
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Figure 5.17: 3D models for victims used in the simulated exploration experiment.

The maze is significantly larger than the previous simulated experiments

for two reasons: first, we are not explicitly testing navigation, so we made it somewhat

easier to navigate, and second, we wanted the task to be sufficiently challenging that

not all participants would be able to search the entire environment in the time allotted

for the experiment.

The real world experiment

For the real world exploration task, we again converted part of the second

floor of the Computer Science Department at Brigham Young University into an

obstacle course for the robot to travel through. The environment is similar to the

one used in the previous chapter with the difference that we now use fewer obstacles

and the obstacles are in larger groups. The purpose of this design is so that the

operator can use the camera to search the group of obstacles to the side of the robot

as it is driven forward. After searching one group of obstacles, the robot must be

navigated to avoid the next group of obstacles and the camera is again used to search

the obstacles on the side of the robot.1

The length of the real world course is about 50 meters and there are 5

different “cache” areas where objects were hidden; each cache area is between 3–10

1We used the ATRV-Jr robot, algorithms, and software described in Chapter 4.

106



www.manaraa.com

meters in length. Objects are placed on top of, inside of, or between boxes, or placed

on the ground. Most of the objects are placed in such a way that they are only visible

when the camera is panned and/or tilted in the right direction. Further, to correctly

identify some objects, it was occasionally necessary to use the zoom capability of the

camera. (We discuss the technology for preesnting zoom in Chapter 6.) All of the

objects are visible when the robot is in the center of the hallway.

The purpose of this experiment is to have the operator find and identify

objects in an environment that might be of interest. Participants were told that

cardboard boxes and Styrofoam were not interesting, but other things were. In each

experiment there were 12 items hidden throughout the environment (2-3 in each group

of boxes). Some of the objects are shown in Figure 5.18. The larger objects are the

size of a book and the smaller objects are the size of a checker or quarter.

Figure 5.18: Some of the objects used in the real world search experiment.
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Procedure

Operators first performed the simulation tests and then performed the real

world tests. Before beginning the simulation tests, operators were given a chance to

practice driving in an environment similar to the one used for testing. This was done

so the operator would be familiar with how to look for victims and where victims are

located. Operators are given both the 2D and 3D interfaces during training and are

allowed up to 15 minutes to practice driving the robot and familiarizing themselves

with the robot controls. For both the simulation and the real world tests, the robot

is controlled with a Microsoft Sidewinder II force-feedback joystick. The joystick and

controls are shown in Figure 5.19.

Figure 5.19: The joystick and controls used for the exploration experiments.

During training, the task and requirements of the experiment are explained

to the operators along with strategies that might help them finish the task faster. In

particular, participants were told that the environment contained numerous jail cells

and their task was to observe and report the contents of each cell. Participants were

asked to report whether or not there was a cell (bars were present), whether a cell
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was occupied or unoccupied, and the primary colors of the clothes of any victims.

Additionally, participants were asked to report their findings in order (e.g. “Starting

from the right, I see a blue shirt victim, an empty cell, no cell, a green shirt victim, a

white shirt victim,” etc). The findings are reported to an assistant who wrote down

what the operator said they had found. Participants were also given the advice that

they could accomplish the task faster if they could drive the robot while the camera

was not centered in front of the robot. The purpose of sharing this advice is that we

wanted the participants to use the camera for the experiment and not rely on moving

the robot to search the environment.

Operators were told to move the robot through the environment as quickly

as possible because each simulated test lasts only six and a half minutes. Participants

were also directed to begin their search with the outer portion of the maze and once

that was complete proceed towards the inner area of the maze. This was done so that

paths traversed would be similarl and could therefore be compared.

After training, we performed counter-balanced tests for both the 2D in-

terface and the 3D interface. Each interface displayed video, map, robot pose, and

camera pose. The interfaces used for this experiment are shown in Figure 5.20. Upon

completion of the simulation portion of the experiment, we shut down the simulator

and started up the base station for communicating with the real robot.

Before testing with the real robot, we gave each participant a chance to

practice driving the robot through a training section of the maze. This was beneficial

because although the controls were exactly the same as in simulation, there were some

nuanced differences between controlling the real and simulated robots. For example,

one participant claimed that they were “more worried about hitting things in the real

world.” Additionally, the force-feedback activated by the joystick when the robot

got too close to walls startled some participants. The training section of the maze

allowed participants to experiment with the intelligence on the robot and get an idea

of the type of environment they would be exploring and how we hid obstacles in the

environment.
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Figure 5.20: The 2D (top) and 3D (bottom) interfaces we used for the exploration
experiment.
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After training, the operators drove the robot to the start position of the

testing environment and began the real world tests. For testing we used a within-

subjects counter-balanced design where each operator drove with both the 2D inter-

face and the 3D interface. The experiment was set up such that the operator would

drive the robot through the obstacle course with one interface, then at the end of the

course an assistant would change the interface, turn the robot around, reset the map

building algorithms, change the hidden objects and their locations, and start the next

test. Upon completion of the two real world experiments, the robot was plugged in

until the next participant’s real world tests.

5.3.2 Results

Eighteen participants were paid to perform this exploration experiment

with both a simulated and a real robot. Participants were recruited from the Brigham

Young University community with most subjects enrolled as students. During the

real-robot tests, there was one instance where the robot powered off part way through

the second test. The results from this test are not included in the analysis, but the

completed portions of the experiment are still used. Results from the simulation por-

tion of the experiment are presented first followed by results from the real world por-

tion of the experiment. Throughout the following discussion, statistical significance is

obtained with a paired, two-tailed t-test with n=18 samples in the simulation results

and n=17 samples in the real world results unless otherwise specified.

Simulation

On average, participants correctly identified 19% more places in the envi-

ronment with the 3D interface than with the 2D interface (x̄2D = 18.1, x̄3D = 21.6,

p = 1.1 × 10−2). Since this experiment had a time limit, there was not a significant

difference in the average time to completion, however, there were 6 participants (33%)

who finished the task before the time expired using the 3D interface, whereas only 3

(17%) participants finished the task before the time expired using the 2D interface.

One useful measure of performance is the average time it took to identify a place
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2D 3D
Interface Interface % Change p-value

Time to Completion (s) 380 373 -1.9% 1.1× 10−1

Average Places Identified 18.1 21.6 19% 1.1× 10−2

Time per place identified (s) 25.9 18.4 -29% 5.5× 10−2

Table 5.8: Identification and time results for the simulation portion of the expeirment.
.

2D 3D
Interface Interface Change p-value

Average Velocity (m/s) 0.32 0.37 16% 2.4× 10−2

Average Collisions 8.6 4.8 -44% 7.4× 10−3

Time Touching 6.9% 3.0% -56% 9.1× 10−4

a Wall (%)

Table 5.9: Some of the objective results from the simulation portion of the experiment.
.

in the environment. This was measured for each participant by dividing the total

time spent on the task by the number of places identified. With the 3D interface

it took an average of 29% less time to identify each place in comparison to the 2D

interface (x̄2D = 25.9s, x̄3D = 18.4s, p = 5.5× 10−2). The results of the average time

to completion and number of places identified are shown in Table 5.8.

Some of the reasons the operators were able to identify victims faster with

the 3D interface are that the robot traveled 16% faster, had 44% fewer collisions, and

was in contact with walls 56% less frequently than with the 2D interface. Table 5.9

presents a summary of these results for the experiment. Figure 5.21 presents the

percentage of time that the robot is within a given distance of the nearest obstacle.

Another interesting observation is that the operator drove the robot with

the camera off center a larger portion of the time with the 3D interface in comparison

to the 2D interface. In particular, significantly more driving time (59%) was spent

with the camera tilted at least 10 degrees up or down (x̄2D = 28%, x̄3D = 59%,

p = 1.8 × 10−3) and marginally significantly more driving time (10%) was spent

with the camera panned at least 15 degrees off-center (x̄2D = 78%, x̄3D = 86%,

p = 1.3×10−1). Figures 5.22 and 5.23 show a cumulative distribution function of the
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Figure 5.21: The percentage of time that the robot is within a given distance of the
nearest obstacle.

time that the operator navigates the robot with the camera greater than a given angle

off-center divided by the total time of the experiment. The difference in the camera

tilt CDFs are statistically significant and the difference in the camera pan CDFs are

marginally significant. Additionally, there was a marginally significant increase in the

percentage of time the camera was zoomed in with the 3D interface in comparison to

the 2D interface (29%, x̄2D = 15%, x̄3D = 19%, p = 1.3× 10−1).

Real world

There is no statistical difference in the number of items found with the

2D and 3D interfaces in the real world portion of the experiment. However, there

is a slight (8.2%) marginally significant decrease in the time to finish the obstacle

course when using the 3D interface over the 2D interface (x̄2D = 449s, x̄3D = 412s,

p = 2.1 × 10−1). There is also a significant decrease in the average time to identify

each object, as measured, for each participant, by the time to complete the task

divided by the total number of objects identified. The 3D interface required 10% less

time per object than the 2D interface (x̄2D = 44.5s, x̄3D = 40.0s, p = 2.8×10−2). We
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Figure 5.22: The percentage of time the robot was navigated while the camera was
tilted up or down at least a given angle from the center position.

Figure 5.23: The percentage of time the robot was navigated while the camera was
panned to a side a given angle from the center position.
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2D 3D
Interface Interface % Change p-value

Time to completion (s) 449 412 -8.2% 2.1× 10−1

Places identified 10.27 10.29 0.2% 7.6× 10−1

Time per place identified (s) 44.5 40.0 -10% 2.8× 10−2

Table 5.10: Identification and time results for the realworld portion of the expeirment.
.

also observed that the robot, on average, had to protect itself from collisions 44% less

with the 3D interface than the 2D interface (x̄2D = 7.9, x̄3D = 4.4, p = 3.9 × 10−2).

The identification and time results are shown in Table 5.10.

One of the reasons the time to completion is not as different between

the interfaces as observed in previous experiments is that the participants employed

different strategies to search for the hidden objects. In particular, some participants

were much more careful searching an area than other participants. This naturally

led to more objects found and a correlating longer time for completion. When we

compare the participants who used the 3D interface first and those who used the 3D

interface second, we find that the group that used the 3D interface second finished

the task 24% faster (x̄3D1 = 472s, x̄3D2 = 359s, p = 4.1 × 10−2, n = 9, unequal

variance t-test) than the group that used the 3D interface first, but they also found

16% fewer obstacles on average (x̄3D1 = 11.25, x̄3D2 = 9.44, p = 3.3 × 10−2, n = 9,

unequal variance t-test). There was not a significant difference in time per item found

or robot initiative based on which interface was used first.

5.3.3 Discussion

This experiment shows that operators could find things faster with the 3D

interface in comparison to the 2D interface despite different strategies for searching.

The results also indicate that with the 3D interface operators spend more time with

the camera further off-center than with the 2D interface. This result is interesting

when combined with the improvment in navigational awareness with the 3D interface
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because it suggests that the 3D interface supports the use of a pan-tilt camera better

than a 2D interface for search and identify tasks.

5.4 Conclusion

In this chapter we presented three user studies that compare the usefulness

of a 2D and 3D interface when performing search tasks with a pan-tilt camera. Our

results indicate that in general, the 3D interface supports the use of a movable camera

much better than a conventional 2D interface primarily because the orientation of the

camera is presented relative to the robot in the integrated 3D display as opposed to

a side-by-side iconic representation with the 2D interface.

Specifically, we found that with the 2D interface there was no difference

in time to completion when the robot had a movable camera or a stationary camera.

This is interesting because the environment was designed to exploit the use of a pan-

tilt camera and even though the camera was used, the operator drove so slowly that

any benefits of the camera were cancelled out.

In contrast, we found that with the 3D interface there is an improvement

in the time to completion of a search task when the robot had a movable camera

in comparison to a robot with a stationary camera. Operators did drive the robot

slower with the pan-tilt camera than without, but it was not so slow as to overcome

the advantages of the movable camera.

We also found that operators were much faster at finding and identifying

things of interest with the 3D interface than with the 2D interface. Part of this

was due to improved navigability with the 3D and part was due to the fact that

the operator used the camera more while navigating the robot. It is interesting that

even though the camera was used more with the 3D interface, navigational awareness

remained high.

For design purposes, since information is diverse and not usually focused

directly at camera level to a robot, it is important in search tasks to have the ability to

use a pan-tilt-zoom camera while driving the robot and to make this control intuitive

for the operator. Integrating the orientation of the camera in a 3D perspective along
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with map, video and robot pose information is a good way to facilitate search because

information regarding the orientation of the camera on the robot is readily available

and visible to the operator.
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Chapter 6

Principles and Extensions

In the previous user studies, we showed that operators were able to perform

navigation and exploration tasks much better with the 3D interface than with the 2D

interface. The purpose of this chapter is to discuss why the 3D interface supported

better performance than the 2D interface.

The chapter begins by discussing the cognitive effort required for remote-

robot locomotion given a conventional 2D interface. In the discussion we point out

that one goal of the 3D interface is to reduce the cognitive workload required to

perform robot locomotion. Next, we present three design principles used by the

3D interface to reduce the cognitive workload of the operator, namely, the use of a

common reference frame, the correlation of action and response, and the use of an

adjustable perspective. Finally, we discuss how the design principles can be applied

to extend the 3D interface to other domains.

6.1 Cognitive Processing

Effectively controlling a robot from a remote location requires the efficient

translation of sensor information into purposeful action. If information from the robot

is presented poorly, the operator can be overwhelmed with the cognitive workload of

just trying to understand what movements can be done by the robot.

In a landmark paper, Gibson and Crooks treat the problem of automobile

driving as primarily a perceptual task. They write, “Locomotion is guided chiefly by

vision, and this guidance is given in terms of a ‘path’ within the visual field of the in-

dividual such that obstacles are avoided and the destination ultimately reached” [45].
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They then present the notion of a “field of safe travel” and discuss how this notion

implies that the locomotion portion of driving is primarily a perceptual task with very

little input required from higher cognitive levels. In terms of Rasmussen’s Knowledge

Base, Rule Base, and Skill Base hierarchy of behavior, the locomotion portion of

driving is decidedly skill-based [48, 100, 110].

By contrast to Gibson’s perception-based treatment of skill-based automo-

bile driving, Woods et al. identify the difficulty of operating a robot remotely given

conventional interfaces as seeing the world through a “soda straw.” They write, “The

limited angular view associated with many remote vision platforms creates a sense

of trying to understand the environment through what remote observers often call a

‘soda straw’ ” [138]. This limited perspective requires operators to use higher level

cognitive processes to translate sensor readings into a sense of situation awareness.

This suggests that the locomotion portion of teleoperation is not a skill-based but

rather a rule- or knowledge-based behavior [48].

One of the goals of the 3D interface is to present information to a human

in a way that reduces the amount of cognitive information processing required to un-

derstand and interpret sensor readings from a robot. In other words, the 3D interface

was developed to try and turn the control of robot locomotion from a knowledge-

based behavior to a skill-based behavior.1 In order to reduce cognitive workload,

populating the virtual environment with realistic information may seem a reasonable

approach because humans see ‘realistic’ information every day. Nevertheless, Small-

man and St. John discuss the notion of Näıve Realism wherein they claim that as

displays become more realistic, the perceptual system of humans has a more difficult

time interpreting the available information. Processing realistic information requires

higher cognitive workload, and although realistic displays are generally preferred by

operators, they can hurt performance [115].

The user-studies that we discussed previously show that operators are able

to consistently perform navigation and exploration tasks better with the 3D interface.

1Note that training can also be used to move the control behavior from a knowledge-based process
to a skill-based process. However, the focus of this work is on making robot teleoperation easier for
novice operators with little training.
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This improvement in performance suggests that robot locomotion can be more of a

skill-based behavior when the 3D interface is used as compared to a conventional 2D

interface. Additionally, it shows that the design of the 3D interface does not fall into

Smallman and St. John’s Näıve Realism trap because the virtual representation was

not ‘too realistic’ [115]. We next discuss some of the principles addressed by the 3D

interface that led to the improvement in performance.

6.2 Principles

In this section we present three design principles that helped the 3D in-

terface yield better results than the 2D interface. The principles are a) a common

reference frame, b) correlation of action and response, and c) an adjustable perspec-

tive. The principles describe how information from multiple sources can be presented

to the operator in such a way as to reduce the cognitive processing required to inter-

pret and understand the information. We embody the principles by discussing how

the 2D and 3D interfaces address each of them.

6.2.1 Common reference frame

When using mobile robots, there are often multiple sources of information

that theoretically could be integrated to reduce the cognitive processing requirements

of the operator. In particular, a mobile robot typically has a camera, range infor-

mation, and some way of tracking where it has been. To integrate this information

into a single display, a common reference frame is required. The common reference

frame provides a place to present the different sets of information such that they are

displayed in context of each other. In terms of Endsley’s three levels of situation

awareness [35] (Section 2.2), the common reference frame aids the perception and

comprehension elements of situation awareness. In the user-studies we used both

a robot-centric and a map-centric frame of reference to present information to the

operator (Chapters 4 and 5).
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Robot-based reference frame

The robot itself can be a reference frame because a robot’s sensors are

physically attached to the robot. This is useful in situations where the robot has no

map-building or localization algorithms. The reference frame can be portrayed by

displaying an icon of the robot with the different sets of information rendered as they

relate to the robot. For example, a laser range-finder typically covers 180 degrees

in front of the robot; the information of where the laser detected obstacles could be

presented as barrels placed at the correct distance and orientation from the robot.

Another example is the use a pan-tilt camera. If the camera is facing towards the

front of the robot, then the video information should be rendered in front of the robot.

If the camera is off-center and facing towards a side of the robot, the video should be

displayed at the same side of the virtual robot. The key is that information from the

robot is displayed in a robot-centric reference frame.

Map-based reference frame

In the robot-centric reference frame, it most likely will not be beneficial to

represent two or more robots unless they are somehow collocated in a larger reference

frame. If the robots have map-building and/or localization capabilities, such a refer-

ence frame could be map-based. With a map as the reference frame, the operator has

the ability to correlate different sets of information that may not be tied to a robot’s

current set of information. As an example, consider the process of constructing a map

of the environment. As laser scans are made over time, the information is typically

combined with probabilistic map-building algorithms into an occupancy grid-based

map [64, 124]. Updates to the map depend not only on the current pose of the ro-

bot, but on past poses as well. When the range scans of a room are integrated with

the map, the robot can leave the room and the obstacles detected are still recorded

because they are stored in relation to the map and not the robot.

Another example of where a map can be useful as a common reference frame

is with icons or snapshots of the environment. When an operator or robot identifies

a place and records information about it, the reference frame of the map provides a
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way to store the information as it relates to the map of the environment. Moreover,

using a map as the reference frame also supports the use of multiple robots—as long

as they are localized in the same coordinate system. This means that places or things

identified by one robot can have contextual meaning for another robot or operator

that has not previously visited or seen the location.

Reference frame hierarchy

One advantage of reference frames is that they can be hierarchical. At one

level, the information related to a single robot can be displayed from a robot-centric

reference frame. At another level, the robot-based information from multiple robots

can be presented in a map-based reference frame which shows how the robots are

spatially related to each other. In the map-based reference frame, each robot still

presents its own robot-centric information, but now the group of individual robot-

centric reference frames is collocated into a larger reference frame.

We can also imagine another frame of reference wherein multiple maps are

collocated with different robots in each of the maps (i.e. a city with maps of different

buildings). The common reference frame is simply a way to combine multiple sources

of information into a single representation.

2D and 3D reference frames

Both the 2D and 3D interfaces support a common reference frame between

the robot pose and obstacles with the use of a map. However, that is the extent of the

common reference frame with the 2D interface since video, camera orientation, and

operator perspective are not presented in the same reference frame as the map or the

robot. In fact, Figure 6.1 illustrates that with the 2D interface there are actually four

different frames of reference from which information is presented to the operator. In

contrast, the 3D interface presents the video, camera orientation, and user perspective

in the same reference frame as the map and the robot pose as illustrated in Figure 6.2.

The multiple reference frames in the 2D interface require more cognitive

processing than the single reference frame in the 3D interface because the operator
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Figure 6.1: The four reference frames of the information displayed in a 2D interface:
video, camera pose, map, and operator perspective.

Figure 6.2: The reference frames of the information displayed in a 3D interface:
robot-centric and operator perspective (which are both the same).
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must mentally translate different reference frames into the same reference frame to

understand the information regarding the robot’s situation. With the 3D interface,

the cognitive work of combining the reference frames is supported by the interface,

which reduces the cognitive requirements on the operator.

6.2.2 Correlation of action and response

Another principle to reduce cognitive workload is to maintain a correlation

with commands issued by the operator and the expected result of those commands

as observed by the movement of the robot and changes in the display. In terms

of Endsley’s three levels of situation awareness [35] (Section 2.2), the correlation of

action and response affects the operator’s ability to project or predict how the robot

will respond to commands.

An operator’s expected response of the robot depends on his or her mental

model of how commands translate into robot movement and how robot movement

changes the information on the interface. When an operator moves the joystick

forward, the general expectation, with both the 2D and the 3D interface, is that the

robot will move forward. However, the expectation of how the interface will change to

update the robot’s new position is different for both interfaces. In particular, operator

expectation with respect to the change in the video and the change in the map can

lead to confusion with the 2D interface.

Change in video

One expectation of operators is how the video will change as the robot

is driven forward. In the 2D interface, the näıve expectation is that the robot will

travel “into” the video when moving forward. With the 3D interface, the expectation

is that the robot will travel at an angle that correlates to the offset of the camera.

Both of these expectations are correct if the camera is in front of the robot. However,

when the camera is off-center, an operator with the 2D interface expects the robot

to move “into” the video when in reality it moves at an angle to the video which

can be confusing [141]. Only when the camera is directly in front of the robot does
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the operator’s expectation match the observed change in the interface. With the 3D

interface, the operator expects the robot with the off-center camera to move at an

angle to the video, which is the visual response that happens.

Change in map

Another expectation of the operator is how the robot icon on the map will

change as the robot is driven forward. With the 2D interface, the näıve expectation is

that the robot will travel up (north) on the map when the joystick is pressed forward.

Similarly, with the 3D interface, the expectation is that the robot will travel “into”

the display when the joystick is pressed forward. Both of these expectations are

correct if the robot is heading “up” with respect to the map. However, when the

robot is heading in a direction other than north, an operator with the 2D interface

still expects the robot icon to move “up” with respect to the map when in reality

the robot icon moves in the direction the robot is heading. This can be particularly

confusing when turn commands are issued, since the change in the location of the

robot icon on the map depends on the orientation of the robot with respect to the

map [108, 136]. With the 2D interface, only when the robot is heading “up” (north)

with respect to the map does the operator’s expectation match the observed change

in the interface.

With the 3D interface, the operator expects the robot to move into the

display, which is the visual response that happens because the operator’s view of the

robot is tethered to the robot as opposed to the map.

Change in camera tilt

One area of operator expectation that is difficult to match is the operator’s

mental model of what should happen when a camera is tilted up or down. To control

the camera tilt in the experiments in Chapter 6, the POV hat on top of the joystick is

used, the problem is that some operators prefer to tilt the camera up by pressing ‘up’

on the POV and others prefer to tilt the camera up by pressing ’down’ on the POV.2

2A conflict in preferences was not observed when a camera is panned left and right.
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This observation illustrates the fact that sometimes the mental model of the operator

is based on preferences and not the manner in which information is presented.

Cognitive Workload

The advantage of the 3D interface is that the operator has a robot-centric

perspective of the robot because the virtual viewpoint is tethered to the robot. This

means that the operator issues commands as they relate to the robot, and the expected

results match the actual results. Since the operator’s perspective of the environment

is robot-centric there is minimal cognitive workload to anticipate how the robot will

respond to commands.

The problem with the 2D interface is that the operator has a map-centric

perspective of the robot that must be translated to a robot-centric perspective in

order to issue correct commands to the robot. The need for explicit translation of

perspectives results in a higher cognitive workload to anticipate how the robot will

respond to commands.

Additionally, the 2D interface can be frustrating because, to novice oper-

ators, it seems that the same actions in the same situations lead to different results.

The reason for this is that, for the 2D interface used in this dissertation, the most

prominent areas of the interface are the video and the map which always appear

about the same. The orientation of the robot and the camera, on the other hand,

are less prominently displayed even though they significantly affect how the video

will change as the robot is moved and how the robot icon will move on the 2D map.

If the orientation of the robot or the camera is neglected or misinterpreted, it can

lead to errors in robot navigation. Navigational errors increase cognitive workload

because the operator must determine why the actual response did not match his or

her expected response. For this reason, a novice operator can be frustrated that the

robot does different things when it appears that the same information is present and

the same action is performed.
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6.2.3 Adjustable perspective

Although sets of information may be displayed in a common reference

frame, the information may not always be visible or useful because of the perspective

through which the operator views the information. Therefore, the final principle that

we discuss for reducing cognitive workload is to use an adjustable perspective. An

adjustable perspective can aid all three levels of Endsley’s situation awareness [35]

(Section 2.2) because it can be used to a) visualize required information, b) support

the operator in different tasks, and c) maintain awareness when switching perspec-

tives.

Visualization

One advantage of an adjustable perspective is that it can be changed de-

pending on the information the operator needs to “see”. For example, if there is too

much information on a map, the perspective can be zoomed in closer to eliminate

some of the extra information and focus on the area and information of interest. Sim-

ilarly, if there is some information that is just beyond the visible area of a part of the

display the perspective can be zoomed out to allow the visibility of more information.

Visualizing just the right amount of an environment can have a lower cogni-

tive workload than either observing too much or too little of the environment. When

there is too little information in the display, the operator is left with the responsibility

to remember previously recorded information. When there is too much information

in the display the operator is left with the responsibility to find and interpret the

necessary information. Determining the best visualization, however, comes at a cost

to the operator since he or she must think about choosing the right perspective.

The ability to zoom in and out a perspective is a common feature of most

2D and 3D maps, but, in 2D interfaces the map is usually the only part of the interface

with an adjustable perspective.
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Different tasks

Another advantage of an adjustable perspective is that the perspective

through which an operator views a robot in its environment can influence the perfor-

mance on a particular task. For example, teleoperation is usually performed better

with a more egocentric perspective while spatial reasoning and planning is performed

better with a more exocentric perspective [106, 136]. When the perspective of the

interface is not adjusted to match the requirements of a task, the cognitive work-

load on the operator is increased because the operator must mentally adjust their

perception of the information to match the requirements of the task. Even though

tasks are better performed with the proper perspective, conventional 2D interfaces

do not typically support an adjustable perspective, and the user is usually left with

one interface for all the robot tasks.

Maintain awareness

Often robots are versatile and can be used to accomplish multiple tasks,

so it is reasonable to anticipate that an operator would need to change tasks while a

robot is in operation. To facilitate this change, an adjustable perspective can be used

to create a smooth transition between one perspective and another. A smooth tran-

sition between perspectives has the advantage of allowing the operator to maintain

situational context as the perspective changes which reduces the cognitive workload

by reducing the need to acquire the new situational information from scratch [25, 96].

Some instances where a smooth transition might be useful include switching between

egocentric and exocentric perspectives, information sources (GPS-based, map-based,

robot-based), map representations (occupancy-grid, topological), or video sources

(cameras in different locations, different types of camera).

In the user-studies of this dissertation, a different perspective was used for

many of the 3D interfaces because there were different requirements for the tasks

and the information sometimes needed to be viewed differently. In comparison, the

2D interface always had the same perspective because conventional 2D interfaces

generally do not provide an adjustable perspective.
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6.3 Extensions

In this section we explore extensions that apply the principles discussed

in the previous section to the 3D interface. The purpose of this section is to show

how the principles from the previous section can be applied to other domains with

reasonable expectations for success. To begin with, we discuss the use of GPS (Global

Positioning System) for the common reference frame. We then present a representa-

tion for indicating camera zoom. We conclude with an example illustrating the use

of a movable arm on a robot.

6.3.1 GPS reference frame

Recently, an experiment was performed by the Idaho National Laboratory

(INL) using a robot developed by Carnegie Mellon University (CMU) and the 3D

interface we developed at BYU. The scenario was designed such that an unmanned

air vehicle (UAV) flew a flight pattern over a runway and took pictures of the run-

way while an unmanned ground vehicle (UGV) was concurrently tasked to find and

identify land mines on the runway and designate the path it followed to discover

the mines. The requirements for the experiment were that aerial photography, land

mines, robot path, and current robot position all be integrated in a GPS-referenced

display that could be viewed by operators and/or observers.

Populating the 3D interface

This experiment is possible because the common reference frame used for

the 3D interface is compatible with GPS. When the counter-mine robot is turned on,

it determines its current GPS position along with the offset of its current heading

with GPS-based north. The robot’s GPS information is relayed to the 3D interface,

which renders a grid on the ground of the 3D interface that is aligned with the GPS

axes (North-South, East-West) with grid lines drawn every 10 meters. A 3D model

of the counter-mine robot is then rendered at its corresponding GPS location in the

3D interface. A picture of one of the counter-mine robots used for the experiment is

shown in Figure 6.3.
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Figure 6.3: The counter-mine robot used for the GPS-based land mine detection
experiment [13].

When the robot identifies a land mine, the GPS coordinates of the land

mine are determined and the information is used to place a land mine icon in the

3D interface. As the robot positions are updated in the interface, markers indicating

the width of the robot are rendered to illustrate the path traversed by the robot.

Furthermore, an aerial photograph of the robot’s environment is taken from the UAV

and transmitted to the 3D interface. The photograph is manually correlated with the

obstacles detected by the UGV and rendered under the GPS grid lines to give pho-

tographic information of the robot’s environment. A screenshot from the experiment

is shown in Figure 6.4.

This screenshot is taken from a virtual perspective far above the robot. The

reason for this is that the robot was traveling and detecting land mines autonomously

and the interface was primarily used to observe the progress and the environment of

the robot—not to teleoperate the robot. This exocentric perspective helps observers

visualize the robot and its surroundings in the context of the aerial photograph3. In

3The aerial photograph is not as useful when the viewpoint of the 3D interface is close to the
robot because the resolution of the photograph is too low.
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Figure 6.4: Snapshot taken from the INL counter-mine experiment.

the screenshot, icons of the robot and detected mines are shown as they relate to the

path traversed by the robot and detected obstacles.

One of the challenges we observed when viewing the 3D interface from an

exocentric perspective is that the icons in the display appear so small that they are

barely noticeable. Although it is advantageous and often necessary to present the

icon of the robot in proper scale when teleoperating the robot, the requirement of

proper scale can be relaxed in exocentric perspectives because it is more important to

present an imprecise observable representation of the robot’s situation than a precise

non-observable representation. Therefore, in this experiment, the robot is rendered

to appear the same size on the interface, regardless of the perspective from which the

virtual environment is displayed.

Coordinating the real and virtual worlds

One of the advantageous of using GPS as the reference frame for render-

ing information from the robot is that GPS is inherently real-world based which

means that information from the real and virtual worlds should, theoretically, be in-

terchangeable. For example, the real counter-mine robot uses spray paint to mark
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the ground where land mines are detected and where the robot has traveled so there

is a correlation between the information seen in the virtual display and the informa-

tion in the real world. In this way, an observer can see from the virtual environment

where the mines are and what path the robot has taken. Then, upon entering the

real environment, the paint left by the robot helps the observer correlate the virtual

information with the real world. Additionally, if something of interest is observed

from the aerial photograph in the virtual environment, the GPS location can be de-

termined from the virtual environment and used to go to the place of interest in the

real world even though the robot itself has never been there.

Validation

In order to validate the usefulness of the GPS reference frame, an ex-

periment could be designed where an observer tracks a robot’s progress in the 3D

interface, then uses information from the virtual interface to perform a task in the

real world. From a search and rescue scenario, the robot could be used to help an

operator find and identify victims. The information from the search portion of the

task could be relayed to another team member that is collocated in the environment

with the robot to complete the rescue portion of the task. The question to answer is

how well the information in the interface can be conveyed to someone who has not

seen the interface.

Performance metrics for the search and rescue task could include time

to completion and time to fulfill individual instructions. Measurements could also

be made regarding the accuracy with which instructions are given, how frequently

instructions are repeated, and how much communication is required to complete the

task. Since the experiment might require team management, significant training

would be required of novice operators and, therefore, the experiment may be better

suited to those who have had team-training such as military or search and rescue

professionals.

133



www.manaraa.com

6.3.2 Visualizing camera zoom

Pan-tilt cameras are useful for searching an environment because they can

be used to gain a better understanding of the visual scene without moving the robot.

Often, pan-tilt cameras also have a zoom feature which allows the operator to focus

the camera on a small area of the environment. Although the zoom feature can be

useful for observing, in detail, parts of the environment, it is difficult to convey to

the operator the level of zoom of the camera.

The difficulty of making the level of zoom perceivable to the operator is

a result of the tension between the goal to show an increase in image detail and the

goal to show a decrease in the field of view as the camera is zoomed in. In previous

work the tension is described as follows: “shrinking the dimensions of the image can

convey the feeling of a decrease in the field of view, but the greater detail of the

image is masked by the fact that the presentation is smaller; a similarly displeasing

visualization results when the image is ‘pulled’ closer to the robot to emphasize the

amount of detail” [48].

A previous approach

In previous work, a concept for visualizing zoom is described based on

an approach sometimes used in the gaming community which presents an area of

magnification within the virtual environment. The theory is that the ratio between

the image height and the height of the magnified obstacles gives the perception of

a changing field of view and the ratio between the normal and magnified obstacle

heights gives the perception of increased detail [48] (see Figure 6.5).

When this approach was tested in a 3D environment, we found that it

worked fairly well to convey the ideas of increased detail in the image and decreased

field of view. However, the boundary between the magnification area of the display

and the regular portion of the display had quite a visual disconnect because of the

difference in the relative size of obstacles. Furthermore, the increased size of the

obstacles in the magnified portion of the display did not seem indicative of the envi-

ronment. To improve the magnification window, we tried a larger, opaque boundary
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Figure 6.5: A display concept for zoom that helps resolve the tension between in-
creased detail and decreased field of view by allowing the operator to perceive the
differences between a magnified camera image and the perspective of the real world.
Adopted from [48].

to offset the magnification area with a “tunnel”, but the disconnect between the mag-

nified and normal obstacles did not change and it seemed to make the visual scene

too crowded.

The current approach

To find another solution that can support operator awareness of zoom, we

first discuss some observations. First, additional icons or windows in the display are

undesirable because they tend to make the display more cluttered and extra infor-

mation requires cognitive interpretation by the operator. Second, since the primary

purpose of zooming a camera is to gain more visual information about a place in the

environment, this should be supported by increasing the percentage of the display

that is used to display the video. Third, illustrating the field of view of the camera

may be helpful, but should not be näıvely enforced—especially if doing so conflicts

with the first two observations.

The solution we settled on makes use of an adjustable perspective to give

the sensation of changing the zoom of the camera. In particular, we move the virtual

perspective closer to the robot as the camera is zoomed in. This naturally increases
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the size of the video relative to the size of the display and it loosely conveys the

sense of decreasing the field of view because less of the virtual environment is visible.

To further improve the perception of the decreased field of view, we also shrink the

relative size of the video as the camera is zoomed in. To minimize the tension between

the decreased field of view and the increased detail of the image, the decrease in the

relative size of the video with respect to the virtual scene is a slower process than

the increase in the perceived size of the video with respect to the size of the display.

The end result is that as the virtual perspective is moved towards the robot, the

virtual environment becomes larger, but the camera image gets larger more slowly.

Figure 6.6 illustrates what the 3D interface looks like at different levels of camera

zoom.

Figure 6.6: 3D representation of the level of zoom with a PTZ camera. The appear-
ance of zoom is effected by adjusting the operator’s perspective of the environment.
On the top row from left to right the zoom levels are 1x, 2x, and 4x. On the bottom
row from left to right the zoom levels are 6x, 8x, and 10x.
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Validation

To test different interfaces representing camera zoom, search tasks could be

performed where zoom is required to succeed. The task could be to find and identify

items of interest, wherein the camera must be zoomed in to correctly identify the item.

This would necessarily require the use of the pan-tilt controls and perhaps some robot

navigation, but a significant aspect of the task would be controlling the zoom of the

camera. In order to focus the task on the use of the camera, the need to navigate

the robot could be eliminated with the implementation of a shared control algorithm

where the operator only controls the speed at which the robot moved forward; the

robot is required to avoid obstacles. Before performing experiments for this task,

operators would need to have sufficient training with the camera controls since they

are not as intuitive for novice operators as navigation controls.

6.3.3 Robot arm manipulation

Some robots have movable arms to help an operator with dexterous tasks

such as manipulating door handles (see Figure 6.7) or utilizing human tools [4]. Other,

robots with “arms” have been designed for dangerous situations such as with SWAT

teams, military, or space missions [4, 20, 60, 86].

Figure 6.7: An ATRV-jr robot with an arm attachment used to open a door [13].
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Robots in these situations may have a variety of sensors to provide infor-

mation regarding the arm, the robot, and the environment and how they are related

to each other. In this section we discuss how the principles discussed earlier could be

used to extend the 3D interface to facilitate the use of a movable arm. Since we do

not actually have a robot with a movable arm, this discussion is approached from a

theoretical perspective and illustrations of what the display could look like are shown.

For this discussion, we consider a robot with a movable arm and two video cameras,

one on the base of the robot and one on the arm of the robot.

Frame of reference

To visualize the information from a robot with an arm and two cameras,

we must first identify the reference frame from which the information will be dis-

played. We chose a robot-centric reference frame because the arm and the two video

cameras are physically connected to the robot. Additionally, a map-centric reference

frame is not so useful with a robot arm because although the 3D interface can provide

navigational information, it has not been extended to provide a complete 3D repre-

sentation of the environment (we leave this as a possible direction of future work).

The map that is provided from the laser range finder is obtained from obstacles that

are found in the same plane as the laser range finder. This means that when the arm

is moved to positions that differ from the plane scanned by the laser range finder,

the map information becomes less useful to aid the movement of the robot arm. The

relative uselessness of the map implies that the information required for controlling

the robot arm will most likely come from the video cameras and the pose of the arm

with respect to the environment.

Since there are two cameras on the robot, the question naturally arises of

which camera will provide the best perspective for the task. The choice of which

camera to use is further complicated by the fact that both cameras may be useful

during different parts of the task or there may be a situation when both cameras are

needed at the same time. To help the operator make this choice, it is advantageous

to present both video images at the same time and as they relate to the arm and the
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robot so the operator can directly observe which will be most helpful. The problem

with this is that rendering two video streams in a single, robot-centric reference frame

can lead to operator confusion because there will frequently be overlap between the

information from the two cameras and they will both attract the operator’s atten-

tion [68]. Furthermore, rendering a three-dimensional model of an arm in the same

reference frame as the cameras may only make the representation more confusing.

To simplify the interface, we do not want to eliminate any of the available

information because all the information may be required to support the operation of a

robotic arm. Even toggling some of the information on and off may not be beneficial

because there is cognitive workload required when an operator’s situation awareness

is disrupted and must be recreated [25, 96].

Transparency

To handle the issue of presenting all the available information without

overwhelming the operator, we utilize the ability to make objects semi-transparent in

the 3D interface. Transparency is helpful because it serves to reduce the prominence

of an object in the virtual environment without removing the object entirely. The

increase in transparency of one object also serves to increase the relative prominence

of other objects in the scene.

As an operator switches between video streams, the old video information

can be made more transparent and the new video information can be made more

opaque. The advantage of this is that both video streams are always presented in

context of each other. The theory is that switching focus between video streams when

both are somewhat visible does not disrupt the situation awareness of the operator,

but smoothly shifts the situation awareness to the new source of information.

Transparency can also be used when rendering the pose of the robot arm in

the virtual interface so that the model of the arm does not obscure the video. In fact,

the pose of the entire arm may not be of much interest in comparison to the pose of

the hand at the end of the arm; therefore, we can make the arm mostly transparent

and leave the hand more opaque. The advantage of using transparency is that the
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prominence of the different sets of information can be adjusted to support the needs

of the operator.

The 3D representation

One challenge with representing the arm of the robot in three-dimensions

is that it is difficult to perceive the actual location of the arm with respect to the

body of the robot because of the perspective of the 3D interface. To address this issue

and illustrate the horizontal distance of the arm relative to the robot, a “shadow” of

the arm is projected onto the floor of the virtual environment. Another shadow is

also rendered at the height of the robot (since the floor of the virtual environment is

often obscured by the robot). To illustrate the vertical height of the robot arm, we

considered a vertical bar from the ground to the height of the robot hand (similar

to height-above-ground displays used for aviation [136]). However, it was somewhat

distracting to have the vertical line always following the hand of the robot.

An illustration of how a robot arm might be rendered in the 3D interface

is shown in Figure 6.8. In the figure, the arm of the robot is about 60 degrees to the

left of the front of the robot. The arm is drawn mostly transparent so the video from

the base of the robot and behind the arm can easily be seen. The hand on the arm,

however, is drawn mostly opaque so the pose and the grippers can be observed. In

the top image, the video from the base camera is more opaque to indicate that the

camera on the base of the robot is in use and in the bottom image the video from the

arm is more opaque to indicate that the camera on the arm is in use.

Other Considerations

Although the 3D interface addresses many of the issues we considered im-

portant, it is difficult to know just how well the interface will help when using a

robotic arm. The main problem is that we do not have an arm to test the interface

on which limits our understanding of how the physical arm of the robot will appear

in the video streams as it is moved. Because of this we do not know the best way

to represent the virtual arm to support the observation of the real arm within the
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Figure 6.8: An illustration of how the 3D interface and transparency could be used
to support the use of a mobile robot with an arm and two cameras.
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video. If the hand of the arm is easily visible in the video, it may be the case that

a representation of the pose of the arm is not as useful as simply representing the

different sets of camera information as they relate to the pose of the arm and the

robot.

One thing to consider that may improve the usefulness of any interface

used to control a robot arm is the correlation of an operator’s commands to control

the arm with his or her expected response of how the arm will move and how the

display will change. Once a designer has a good understanding of how an operator

expects the arm to move and the display to change, the expectations can be used to

guide the development of the controls and interface.

Another consideration that may be beneficial is to focus on changing the

perspective from which the operator views the environment. For example, it may be

beneficial to tether the perspective of the virtual environment to the movement of

the arm so actions taken by the operator always affect the interface the same way.

Validation

To determine whether or not the 3D virtual representation of a robot with

a movable arm is more useful than another interface, an experiment could be designed

where an operator is required to find and move objects of interest. Since the arm

is on a mobile robot, the experiment would be more interesting if the task not only

involved the use of the arm, but also the movement of the robot. To minimize

confounding factors, only the manner in which the information is presented should

change between the interfaces. This means that there should be no difference between

the way commands are issued by the operator (e.g. by joystick or keyboard) and the

way the commands are handled by the interface and the robot.

Participants should perform the task with each interface so that fewer par-

ticipants are required and comparisons between the interfaces can be made for indi-

vidual participants. Training should depend on the types of users (novice vs. expert)

and the goal of the experiment (usability vs. learnability), but should be sufficient

that the arm can be reasonably controlled with each interface before actual testing
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begins. Performance metrics should measure how long it takes to complete the entire

task, how long it takes to grasp individual objects, and how many commands an

operator issues to the robot. Additionally, awareness of the arm’s pose with respect

to the environment could be measured by the number of accidental collisions with

the robot arm and the change in distance between the robot hand and the object of

interest.

6.4 Summary

In this chapter, the goal of improving robot teleoperation by reducing

the cognitive workload of an operator was discussed. In the context of reducing

cognitive workload, interfaces that are too realistic were addressed because they can

unexpectedly lead to an increased cognitive workload. Three principles were presented

for interface design that can be used to reduce the cognitive workload on the operator.

The three principles are a) a common reference frame, b) correlation of action and

response, and c) an adjustable perspective. These principles were used to extend the

3D interface to other domains including a GPS-based reference frame, visualization

of camera zoom, and the use of a movable arm on a robot.
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Chapter 7

Summary and Future Work

This dissertation presents a 3D augmented-virtuality interface for teleop-

erating a remote mobile robot in navigation and exploration tasks. The 3D interface

is validated through a series of user-studies comparing performance and navigational

awareness against a prototype 2D interface. In this chapter we summarize the disser-

tation and present future work.

7.1 Summary

Requirements and technology for creating a useful interface for teleoper-

ating a remote robot were first set forth. The requirements are that the interface

must support a) storing information, b) integrating similar information into a single

display, and c) adjusting the perspective through which the operator views the ro-

bots environment. A 3D augmented virtuality interface is described which fulfills the

requirements for a useful display.

The 3D interface was validated through user studies and was observed to

help an operator perform significantly better than a conventional 2D interface in

the tasks performed. In particular, operators were able to finish navigation tasks

about 20% faster because they a) drove the robot faster, b) had fewer collisions,

and c) maintained a further distance from walls. Additionally, operators were able

to complete exploration tasks better because the 3D interface supports the use of a

pan-tilt camera better than the 2D interface. Specifically, operators used the pan,

tilt, and zoom of the camera more with the 3D interface than with the 2D interface.
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Additionally, operators drove the robot with the camera off-center more with the 3D

interface than the 2D interface.

In addition to finishing tasks faster, we objectively showed that operators

tended to have better navigational awareness with the 3D interface in comparison

to the 2D interface as measured by the number of collisions, the average minimum

distance to obstacles, and the percentage of time in proximity to walls. The 3D

interface also supports the operator better in conditions of network delay and is

preferred more than ten to one by participants in comparison to the 2D interface.

Finally, three design principles for presenting multiple sets of information to

the operator were discussed that ultimately led to the success of the 3D interface. The

principles are a) a common reference frame, b) the correlation of action and response,

and c) an adjustable perspective. The principles were then used to discuss extensions

of the 3D interface to other domains, including a) a GPS referenced experiment,

b) visualizing camera zoom, and c) the use of a robotic arm.

7.2 Future Work

In the current implementation of the 3D interface, the map is obtained

from a laser range finder that scans a plane of the environment a few inches off the

ground. This approach works particularly well for planar worlds, which generally

limits the work to indoor environments. In order to apply the research to an outdoor

environment, we will look at approaches for measuring and representing terrain (e.g.

an outdoor trail). One of the main challenges with presenting a visualization of terrain

is that it necessarily will increase the cognitive workload on the operator because

there will be more information displayed in the interface since terrain information

is available at every place in the environment. A solution will be determined by

answering the question of how much information is required to give the operator

sufficient awareness with a minimal effect on the operator’s cognitive workload.

Another area that we are interested in pursuing is the use of multiple,

heterogeneous robots. In Chapter 6 we described a situation where a UAV provided

some information for visualizing the environment around a robot in a counter mine
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task. We are interested in extending the interface such that multiple UAVs and

UGVs can be used to populate the virtual environment with photographs and other

sensed information that can help an operator understand the environment around

the robot. On a larger scale, consider a mission with many different participants and

resources: some human, some robotic, some air-based, and some ground-based, all of

which have information that needs to be combined to give a director or commander

sufficient understanding to make good decisions. The question to address is how to

present the information to an operator or team of operators.

Related to the use of heterogeneous robots is the ability to make the inter-

face adjustable or adaptable based on the role of the operator using the interface. For

example, in a search and rescue operation there may be one operator who is in charge

of moving the robot while another is in charge of searching the environment. Further,

consider the director of the search operation who may not be in charge of operating

a robot but may require information about what has been explored, what has been

found, and how resources are being used. Each individual may require different sets

of information to adequately perform their task. If too much information is provided

then the cognitive workload to understand the required information for a particular

task will lead to decreased performance. Similarly, too little information will also

lead to decreased performance. Moreover, it is reasonable to consider that multiple

operators may use the same interface at the same or different times based on the sit-

uation of the response and available resources. Therefore, it would be interesting to

try and find a satisfying balance between the information needs of multiple operators

performing different tasks.

Lastly, most of our research has been under the assumption that an opera-

tor will be in charge of the navigational responsibilities of the robot. Recent advance-

ments in intelligent navigation algorithms demonstrate that intelligent vehicles can

now traverse very difficult environments successfully without human supervision [26].

When considering human-robot interactions with an intelligent robot, communication

is best when the human understands the decision process of the robot. This could be

facilitated by a 3D interface wherein cues are presented to the operator concerning
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the intent of the robot. Moreover, it would be interesting to study how and when

robot intelligence might help an operator accomplish a task with a robot in compar-

ison to not having intelligence on the robot. Following such a path could enable the

comparison of how the interface and the intelligence on the robot can be combined

to improve robot usability.
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